Three Phase Encapsulated Type
SF₆ Gas Insulated Switchgear
Type SDH314/SDHa314 for 72.5 to 145 kV

Typical Arrangement

Fig. 8 Cable feeder unit with double busbar (Tr.bay)

Fig. 9 Bus coupler unit

Fig. 10 Cable feeder unit with double busbar

Printed on recycled paper

Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku, Tokyo 141-0032, Japan
Phone: (03)5435-7111

Internet address: http://www.fujielectric.co.jp

Information in this catalog is subject to change without notice.

2013-3(C2013/C2002/E-HCTP/SM Printed in Japan
The number of applications for SF₆ gas insulated switchgear (GIS) has been tremendously growing all over the world, because it has many advantageous features as below:

- Small space requirement
- High reliability
- Safety
- Good harmony with environment
- Long maintenance intervals
- Short erection period at site

Fuji started the development of SF₆ gas insulated switchgear (GIS) in the 1960’s. The first 72.5 kV GIS, which was of the phase segregated type, was put into operation in 1970. Since then Fuji has also developed three phase encapsulated type GIS in addition to phase segregated one as our standard series of GIS. Based on these experiences with high and long term technology, Fuji has successfully developed as a standard series of three phase encapsulated type GIS which realizes a quite compact and very reliable construction.

The 72.5 kV and above GIS is being manufactured in our substation equipment factory located in Chiba prefecture, Japan. The substation equipment factory has been recognized to be in accordance with the requirements of the quality standards ISO 9001.

Small overall dimensions make for minimum space requirements. Therefore, the costs of foundations and buildings can be minimized.

The fully earthed enclosure protects operators not to touch live parts directly, prevents from radio interference, and realizes no atmospheric pollution.

The modular design principle applied realizes the standardization of components and parts. This makes possible the large quantity production way which increases the reliability of components and parts with their easy stock control.

Unified SF₆ gas pressure throughout the switchgear makes simplified gas maintenance work.

Technical data

<table>
<thead>
<tr>
<th></th>
<th>[kV]</th>
<th>72.5</th>
<th>100</th>
<th>123</th>
<th>145</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated power frequency</td>
<td>[kV]</td>
<td>Common values</td>
<td>140</td>
<td>185</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Across the isolating distance</td>
<td>160</td>
<td>210</td>
<td>265</td>
<td>315</td>
</tr>
<tr>
<td>Rated lightning impulse</td>
<td>[kV]</td>
<td>Common values</td>
<td>325</td>
<td>450</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td>Across the isolating distance</td>
<td>375</td>
<td>520</td>
<td>630</td>
<td>750</td>
</tr>
<tr>
<td>Rated normal current</td>
<td>[A]</td>
<td>Busbar</td>
<td>up to 3150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>up to 3150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated short-circuit breaking current</td>
<td>[kA]</td>
<td>31.5/40 Note 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated short-time withstand current (3 s)</td>
<td>[kA]</td>
<td>31.5/40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated peak withstand current</td>
<td>[kA]</td>
<td>80/100(50 Hz), 82/104(60 Hz)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated SF₆ gas pressure, gauge (at 20 °C)</td>
<td>[MPa]</td>
<td>Switchgear</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Circuit breaker</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated break time of circuit breaker</td>
<td>[cycles]</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated operating sequence of circuit breaker</td>
<td></td>
<td>O-0.3 s-CO-3 min.-CO, O-3 min.-CO-3 min.-CO-15 s-CO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1
The following GIS type is applicable for each short-circuit breaking current rating.
Up to 31.5 kA: SDH314 with a CB operating mechanism of motor-charged spring type
40 kA: SDHa314 with a CB operating mechanism of oil hydraulic type
Components and Construction

Typical Section of a Unit

Circuit breaker

- A motor-charged spring (for up to 31.5 kA) or an oil hydraulic operating mechanism (for 40 kA) is applied.
- Three interrupters are commonly operated through insulating operating rods and a link mechanism.
- Combination of a puffer cylinder and an expansion chamber can achieve excellent breaking performance from small current to large current with a small operation power.
- Maintenance free up to 2,000 times load breaking

Fig.1 Sectional view of a cable feeder unit with double busbar

Fig.2 Single line diagram of a cable feeder unit with double busbar

Fig.3a Outline of circuit breaker

Fig.3b Principle of arc quenching

- Closed position

- Opening(priming)
 SF6 gas in the puffer cylinder is being compressed.

- Opening(arc quenching)
 SF6 gas flows during arc quenching.

- Open position

As soon as the arcing contacts separate, the compressed SF6 gas flows through the arc quenching nozzle and extinguishes the arc.
Three phase conductors made of aluminium or copper, depending on the current rating, are supported by gas tight insulators. Disconnector and earthing switch: Line disconnector is incorporated together with a make-proof earthing switch in one housing as a combined disconnector/earthing switch. Bus disconnector is assembled in each busbar compartment. The disconnector have a switching capability of bus-transfer current, small capacitive current as bus charging and small inductive current as transformer magnetizing current, if required. Maintenance earthing switches on the both sides of the circuit breaker are linked together by an operating rod and operated by a common operating mechanism. Earthed side of the earthing switch is brought out from the earthed metal housing and earthed to it through a removable link for primary injection test. Disconnectors and earthing switches are normally motor or manual-operated. The make-proof earthing switch is provided with a motor-charged spring operation mechanism.

Current transformer: The current transformer is of foil-insulated type with ring core mounted in the CB enclosure. SF₆ gas provides the high-voltage insulation.

Voltage transformer: The voltage transformer is of induction type. SF₆ gas provides the high-voltage insulation.

Surge arrester: The surge arrester consists of zinc oxide (ZnO) element with excellent low residual voltage characteristics and long service life.

Busbar

Fig.4 Line disconnector and earthing switch

Fig.5 Current transformer

SF₆ gas system

Rated SF₆ gas pressure is unified at 0.6MPa (gauge) for all compartments. SF₆ gas pressure changes depending on the ambient temperature as shown in Fig.6.

The monitoring of SF₆ gas is carried out by means of temperature compensated pressure switches in the manner as tabled below.

<table>
<thead>
<tr>
<th>Components</th>
<th>Rated SF₆ pressure [MPa]</th>
<th>Low alarm pressure [MPa]</th>
<th>Operation lockout pressure [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit breakers</td>
<td>0.6</td>
<td>0.55</td>
<td>0.8</td>
</tr>
<tr>
<td>Disconnectors and earthing switches</td>
<td>0.6</td>
<td>0.55</td>
<td>Note 2</td>
</tr>
<tr>
<td>Other components</td>
<td>0.6</td>
<td>0.55</td>
<td>—</td>
</tr>
</tbody>
</table>

Note 2 : Operation lockout at 0.5 MPa (at 20 °C) is upon request.

Fig.7 shows the typical gas zones and gas monitoring system. The SF₆ gas filled disconnector/busbar compartment is sealed off from the adjacent unit by gas tight and arc-proof disconnectors. A similar insulator seals off this compartment from the circuit breaker.

All gas zones are monitored by gas density relays. The switchgear has a very low gas leakage rate. Guaranteed gas loss is less than 0.5 % per annum.

Fig.6 Pressure-temperature characteristic curve of SF₆ gas

Fig.7 SF₆ gas system
Three Phase Encapsulated Type
SF₆ Gas Insulated Switchgear
Type SDH314/SDHa314 for 72.5 to 145 kV

SDH314/SDHa314
For 72.5 to 145 kV

Fuji Electric Co., Ltd.
Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku, Tokyo 141-0032, Japan
Phone: (03)5435-7111

Internet address: http://www.fujielectric.co.jp
Information in this catalog is subject to change without notice.