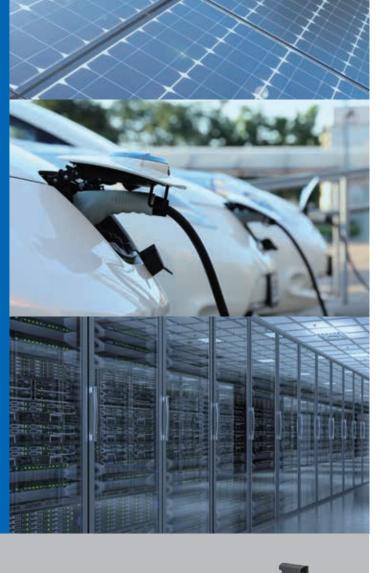


SiC devices contribute to

High efficiency

Miniaturization


High power density

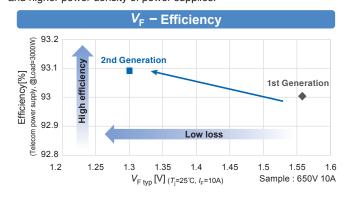
Power supplies

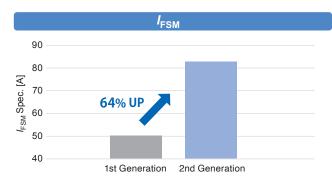
By optimizing surface structure and applying thin wafer process technologies, the 2nd Generation products achieve low conduction loss ((low V_F), high surge current capability (high I_{FSM}), and high heat dissipation compared to conventional products (1st Generation SiC Schottky barrier diodes). These features contribute to high efficiency, miniaturization, and high power density of power supplies.

- Increase power efficiency
 Approximately 18% lower conduction loss than
 conventional products
- Decrease device temperature
 Lower conduction loss than conventional products in
 whole temperature range
- Enhanced reliability
 Approximately 64% higher surge current capability

2nd Generation

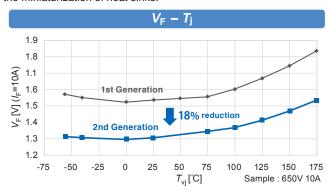
SiC Schottky Barrier Diode

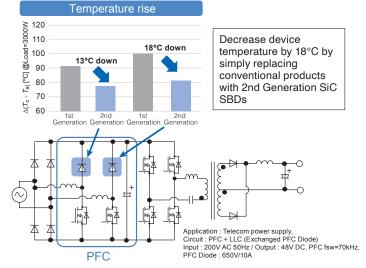



1. Increase power efficiency

Lower $V_{\rm F}$ contribute to approximately 18% lower conduction loss than conventional products. Contribute to higher efficiency, miniaturization, and higher power density of power supplies.

3. Enhanced reliability


Achieve both low V_F and high surge capability (I_{FSM}) . Increase $I_{\rm FSM}$ rated value from 50A to 82A (64% increase)



Sample : 650V 10A

2. Decrease device temperature

Lower $V_{\rm F}$ (approximately 18%) than conventional products in whole temperature range. Decrease device temperature and contribute to the miniaturization of heat sinks.

Product Lineup

Rated Voltage	I _F [A]	6	8	10	20	40
650V	TO-220-2	FDC2PT06S65	FDC2PT08S65	FDC2PT10S65		
	TO-220F-2	FDC2AT06S65	FDC2AT08S65	FDC2AT10S65		
1200V	TO-247-2				FDC2WT20S120	FDC2WT40S120

Safety Precautions

*Before using this product, read the "Instruction Manual" and "Specifications" carefully, and consult with the retailer from which you purchased this product as necessary to use this product correctly. *The product must be handled by a technician with the appropriate skills.

Fuji Electric Co., Ltd.

URL www.fujielectric.com/products/semiconductor/

Gate City Ohsaki, East Tower, 1-11-2, Osaki, Shinagawa-ku, Tokyo 141-0032, Japan Tel:+81-3-5435-7156

• Fuji Electric Hong Kong Co., Ltd Unit 1601-03 & 05, 16/F., Tower II, Grand Century Place, No. 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2664-8699 • Fuji Electric Taiwan Co., Ltd. 10F. No.168, Song Jiang Road, Taipei, Taiwan Tel: +886-2-2515-1820 • Fuji Electric Asia Pacific Pte. Ltd.

151 Lorong Chuan, #03-01/01A, New Tech Park, SINGAPORE 556741 Tel: +65-6533-0014 • Fuji Electric India Private Ltd. 119(Part), 120, 120A, Electrical and Electronics Industrial Estate, Perungudi, Chennai - 600096, Tamil Nadu, India Tel: +91-44-40004200 50 Northfield Avenue Edison, NJ 08837, USA

• Fuji Electric Europe GmbH Goethering 58, 63067 Offenbach am Main, F.R. GERMANY

• Fuji Electric Corp. of America Tel: +1-732-560-9410 Tel: +49-69-6690290

> Fuji Electric Innovating Energy Technology

2022-3 FOLS PDF