– Chapter 2 –

Description of terminal marking and terms

	Table of Contents		
1	Description of terminal marking		2-2
2	Description of terms		2-3

1 Descriptions of the I/O terminals

Main terminals

Terminal Name	Description
P (P1, P2)	DC-bus terminals after smoothing capacitor
N (N1, N2)	P: + side, N: - side
В	Collector terminal of the Brake IGBT. Connect a brake resistor for dissipating regenerated energy
U	
V 3-phase output terminals	
W	

* P1, P2, N1 and N2 terminals are P631 package only.

Control terminals

Terminal Name	P629 Pin#	P626, P630, P636 Pin#	P631 Pin#	Description
GND U	1	1	1	Ground reference for the U-arm control power supply
Vcc U	3	4	3	U-arm control power supply positive terminal
Vin U	2	3	2	U-arm control signal input
ALM U	-	2	4	U-arm alarm signal output
GND V	4	5	5	Ground reference for the V-phase control power supply
Vcc V	6	8	7	V-arm control power supply positive terminal
Vin V	5	7	6	V-arm control signal input
ALM V	-	6	8	V-arm alarm signal output
GND W	7	9	9	Ground reference for the W-phase control power supply
Vcc W	9	12	11	W-arm control power supply positive terminal
Vin W	8	11	10	W-arm control signal input
ALM W	-	10	12	W-arm alarm signal output
GND	10	13	13	Ground reference for the lower arm control power supply
Vcc	11	14	14	Control power supply positive terminal for the lower arm
Vin X	12	16	16	X-arm control signal input
Vin Y	13	17	17	Y-arm control signal input
Vin Z	14	18	18	Z-arm control signal input
Vin DB	-	15	15	DB-arm control signal input
ALM	15	19	19	Lower-arm alarm signal output

* Pin (15) of P626 is of no contact.

* Pin (15) of each of P631 (6in1), P630 (6in1) is of no contact.

2 Description of terms

2.1 Absolute maximum rating

Term	Symbol	Description
DC power supply voltage	V _{DC}	Maximum DC bus voltage between the P and N terminal
DC power supply voltage at short circu	iit V _{SC}	Maximum DC bus voltage between the P and N terminal during short-circuit protection and over current protection
Collector-Emitter blocking voltage	V _{CES}	Maximum voltage between the collector and emitter terminal of the built-in IGBT, and peak inverse voltage of the FWD.
	I _C	Maximum DC collector current for each IGBT
Collector current	I _{CP}	Maximum peak collector current for each IGBT
	-I _C	Maximum DC forward current for each FWD
Diode forward current for DB	I _F	Maximum DC forward current for FWD in brake circuit
Collector loss	Pc	Maximum power dissipation for each IGBT at Tc=25°C, Tj≤150°C
Control power supply voltage	V _{cc}	Maximum voltage between the V _{cc} and GND terminal
Input voltage	Vin	Maximum voltage between the Vin and GND terminal
Alarm voltage	V _{ALM}	Maximum voltage between the ALM and GND terminal
Chip junction temperature	Τ _j	Maximum IGBT/FWD chip junction temperature during continuous operation
Case temperature during operation	T _{opr}	Allowable case temperature range during operation (measured point of the case temperature Tc is shown in Figure 5-4)
Storage temperature	T _{stg}	Allowable ambient temperature during storage or transportation without being subject to electrical load.
Soldering temperature	T _{sol}	Maximum temperature for soldering the terminals to a PCB
Isolation voltage	V _{iso}	Maximum RMS isolation of sinusoidal voltage between all the terminals and heat sink (all terminals are shorted)
Terminal	-	Maximum screw torque for the main terminal with specified screw
Screw torque Mounting	-	Maximum screw torque for mounting the IPM on heat sink with specified screw

2.2 Electrical characteristics

2.2.1 Main circuit

Term	Symbol	Description
Collector-Emitter leakage current	I _{CES}	Leakage current when specified voltage is applied between the collector and emitter and all input signals are "H" (=all IGBTs are turned-off).
Collector-Emitter saturation voltage	V _{CE(sat)}	Voltage drop between the collector and emitter when gate input signal is "L" (=IGBT is turned-on)
Diode forward voltage	V _F	Voltage drop across the diode at defined forward current at input signal is "H" (=IGBT is turned of)
Turn-on time	t _{on}	Time interval between the moment when gate input voltage has exceed Vinth(on) and the collector current has increased to 90% of the load current. (see Figure 2-1)
Turn-off time	t _{off}	Time interval between the moment when the gate input voltage has dropped less than Vinth(off) and the corrector current drops to 10% of the load current. If the collector dropping waveform is not a straight line, a tangential line is used as the substitute (see Figure 2-1)
Fall time	t _f	Time interval the collector current decreased from 90% to 10% of the load current
Reverse recovery time	t _{rr}	Time interval between the moment when the collector current exceeds 100% of the load current and the reverse recovery current disappears
Dead time	t _{dead}	Time delay of the turn-on signal from the alternate IGBT turn-off signal.

2.2.2 Control circuit

Term	Symbol	Description
Control power supply consumption	I _{CCP}	Current flows into V _{CC} terminal of upper arm control power supply
current	I _{CCN}	Current flows into V _{CC} terminal of lower arm control power supply
Input throshold voltage	V _{inth(on)}	Voltage above which considerable the control IC can detect the input signal as ON
Input threshold voltage	V _{inth(off)}	Voltage below which considerable the control IC can detect the input signal as OFF

2.2.3 Protection circuit

Term	Symbol	Description
Over current protection current	\mathbf{I}_{CCP}	Current flows into the V _{CC} terminal of upper arm control power supply
Over current interruption lag time	t _{doc}	Lag time since the over current reaches the trip level until the protection start. See Figure 2-3
Short-circuit protection current	I_{SC}	Threshold current for short-circuit protection
Short-circuit protection lag time	t _{sc}	Lag time since the short circuit current reaches the trip level until the protection start. See Figure 2-4
Chip over heat protection temperature	Т _{јОН}	Threshold junction temperature for overheat protection
Chip over heat protection hysteresis	Т _{јН}	Lower hysteresis offset temperature to reactivate after the over temperature protection
Control power supply under voltage protection voltage	V _{UV}	Trip voltage to start under-voltage protection
Control power supply under voltage protection hysteresis	V _H	Higher threshold offset voltage to reactivate after the low voltage protection
	t _{ALM(OC)}	Alarm signal pulse width of the overcurrent protection (OC)
Alarm output hold time	t _{ALM(UV)}	Alarm signal pulse width of under the voltage protection (UV)
	t _{ALM(TjOH)}	Alarm signal pulse width of the overheat protection (TjOH)
Alarm output resistance	R _{ALM}	Value of the built-in resistance that is connected in series to alarm terminals. It limits the primary forward current of opto-coupler.

2.3 Thermal characteristics

Term	Symbol	Description
Thermal resistance between chip and	R _{th(j-c)Q}	Thermal resistance between the case and IGBT chip
case	R _{th(j-c)D}	Thermal resistance between the case and FWD chip
Thermal resistance between case and heat sink	R _{th(c-f)}	Thermal resistance between the case and heat sink at the condition
Case temperature	Τ _C	IPM case temperature (bottom surface of the cupper base plate directly under the chip)

2.4 Noise tolerance

Term	Symbol	Description
Common mode	-	Common mode noise tolerance in our test circuit

2.5 Others

Term	Symbol	Description
Mass	Wt	Mass of the IPM
Switching frequency	f_{SW}	Allowable switching frequency for the control signals to the input terminals.
Reverse recovery current	I _{rr}	Peak value of the reverse recovery current. See Figure 2-1.
Reverse bias safe operating area	RBSOA	The area of the voltage and current which the device can operate without self-damage during turn-off switching. There is a possibility to brake down when voltage or current exceed the area.
	E _{on}	Dissipated switching energy of the IGBT during turn-on
Switching loss	E _{off}	Dissipated switching energy of the IGBT during turn-off
	E _{orr}	Dissipated switching energy of the FWD during reverse recovery
Inverse voltage	V _R	Repetitive reverse peak voltage of the FRD chip in the brake unit
Input current	I _{in}	Maximum current into the Vin terminals

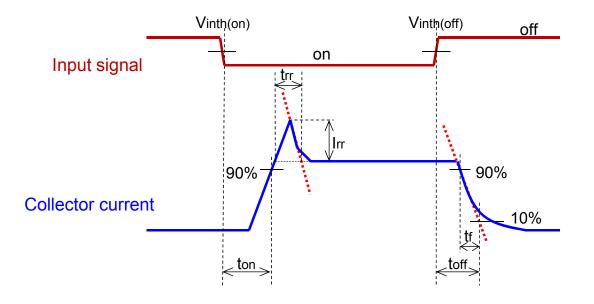


Figure 2-1 Switching times

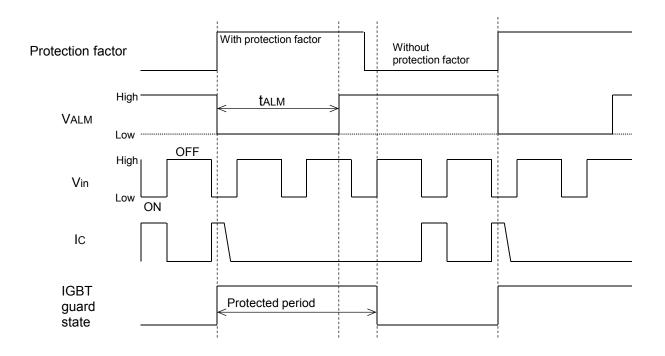


Figure 2-2 Input/output timing diagram

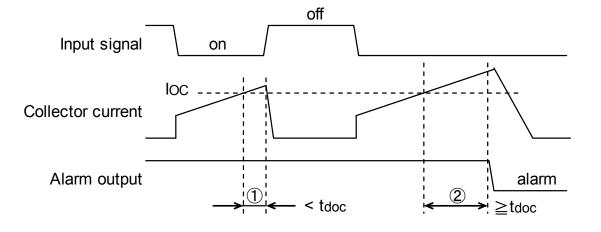


Figure 2-3 Overcurrent interruption lag time (tdoc)

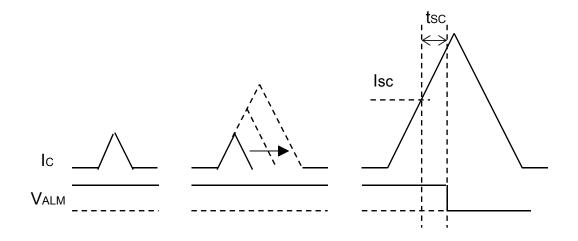


Figure 2-4 Short-circuit protection lag time (tsc)

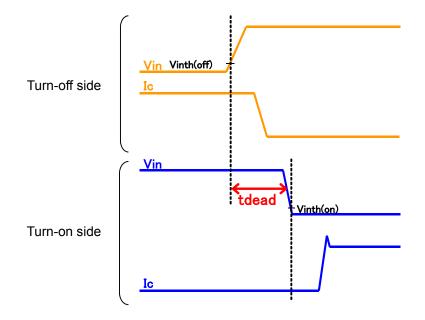


Figure 2-5 Dead time (t_{dead})

