

Chapter 7 Typical Troubles and Troubleshooting

1. Troubleshooting	7-2
2. IGBT Test Procedures	7-7
3. Typical Troubles and Troubleshooting	7-8

This chapter describes typical troubles and how to deal with them.

1. Troubleshooting

When abnormalities such as device failure occurs, it is necessary to clarify the situation and determine the cause before taking countermeasures. Referring to Table 7-1, please investigate the failure mode and analyze the causes of abnormalities by observing the irregularities outside of the device. If the cause cannot be determined by using Table 7-1, use the detailed diagram shown in Fig.7-1(a-f) to help your investigation.

	Table.7-1	Device	destruction	mode and	cause	estimation
--	-----------	--------	-------------	----------	-------	------------

External a	bnormalities	Cause	Э		Device failure mode	Check point	
Arm short circuit		After short circuit detection, when protection is applied (turn-off), the overvoltage exceeds SCSOA and the device is destroyed			SCSOA failure (overvoltage) destruction	Matching of the operation locus and device withstand capability during arm short circuit	
Short low circuit sho circuit sho	Series arm short circuit	Insufficient dead time	t _{off} in time	creased due to insufficient - V_{GE} , dead setting error	Overheat (short circuit withstand capability) failure	Check that $t_{\rm off}$ and dead time match	
	(upper and lower arm	dv/dt shoot through and causes short circuit failure	Insufficient - V_{GE} , long gate wiring			Check for dv/dt erroneous turn-on	
	short circuit)	Short circuit failure due to noise etc.		drive circuit malfunction, logic circuit unction	SCSOA and	Circuit malfunction check	
	Output short circuit	Wiring mistake, abnormal wire contact, load short	overneat failure	Check the conditions during failure, matching of device withstand			
	Ground fault	Wiring mistake, abnormal wire contact.				capability and protection circuit, ground fault wiring condition	
Overload (overcurrent)		Overcurrent flows		c circuit malfunction	Overheat	Logic signal	
				current protection setting error		Review of overcurrent protection setting value	
	Excessive	Overvoltage exceeding the device withstand	Exce	ssive input voltage		Review of overvoltage protection	
	DC voltage	voltage is applied to C-E	Over	voltage protection setting error	0-L overvoltage	level	
Overvolta ge Ex ov		Overvoltage at turn-off exceeds RBSOA		RBSOA	Matching of turn-off operation locus and RBSOA, review of snubber circuit		
	Excessive overvoltage	Overvoltage during FWD reverse recovery exceeds device withstand voltage				Matching of overvoltage and device withstand voltage, review of snubber circuit	
		Gate signal interruption, etc., that result in very short off pulse, causes turn-off \rightarrow turn-on in very short time intervals (on the order of several hundred ns) and generate excessive reverse recovery overvoltage that exceeds the device withstand voltage (hereinafter, short off pulse reverse recovery phenomenon)		Logic or gate drive circuit malfunction due to noise	C-E overvoltage	Logic and gate signals	
				Electromagnetic induction from the main circuit to the gate signal line		Gate signal during high current operation / twisted wire of gate signal line / distance from main circuit to gate signal line	
Drive supply voltage drop		$V_{\rm GE}$ drops below the design value, $V_{\rm CE}$ increases, heat generation (loss) increases, causing destruction		DC-DC converter malfunction		Check circuit	
				Drive supply voltage rise is too slow	Overheat		
				Gate signal wiring disconnected			
Gate overvoltage Static electricity in The gate wiring is		Static electricity is applied to G-E		G-E overvoltage	Check working status (static electricity countermeasures)		
		The gate wiring is too long, resulting in overvoltag	too long, resulting in overvoltage exceeding G-E withstand voltage			Check gate voltage	
Driving with	Driving with open gate Destruction by applying C-E voltage (on voltage / withstand voltage measurement, etc.) while the gate is open		Overheat destruction	Check gate voltage			
Overheat	Insufficient heat dissipation capacity			e terminal mounting screws	Overheat	Check heat dissination condition	
		Insufficient heat dissipation capacity causes the device to overheat beyond T_{vi} max.	Insufficient application of thermal grease			oneck heat dissipation condition	
	Thermal			ing fan malfunction		Check logic circuit	
	Stress			ss applied to terminals from external	Electrical wiring	Stross generated at terminals /	
Stress	Vibration	The terminal soldering part inside the product is disconnected due to stress fatigue	Vibra	∍ ation of other mounting parts applied s to the terminals	disconnection inside the product (open)	mounting state of product and other parts	
Reliability		The application conditions (environment, temperature change, assembly conditions at the time of mounting, storage condition, etc.) of the device and the reliability of the product does not match, causing failure of wiring inside the product, insulation structure, appearance, etc.		Failure mode is different for each case	Check based on Fig.7-1		

Fig.7-1(a) Mode A: RBSOA deviation

B Gate overvoltage		[Origin of failure]
Static electricity	 No measures against static electricity	 - Manufactural failure
Overvoltage	Oscillation	- Long gate wiring
	L • d <i>il</i> dtvoltage	Long gate wiring

Fig.7-1(b) Mode B: Gate overvoltage

Fig.7-1(c) Mode C: Junction overheating

Fig.7-1(d) Mode D: Destruction of FWD

Fig.7-1(e) Mode E: Reliability

F Dielectric breakdown	[Origin of failure]
Improper insulation sheet installation	- Insulation sheet

Fig.7-1(f) Mode F: Dielectric breakdown

2. IGBT Test Procedures

The following items can be determined by using a transistor curve tracer (hereinafter as CT) to check the faulty IGBT.

① G-E leakage current ② C-E leakage current (G-E must be shorted)

Other test equipment, such as a Volt-ohm multi-meter that is capable of measuring voltage/resistance and so forth to determine failures, can be used to help diagnose the fault.

<G-E check>

As shown in Fig.7-2, measure the G-E leakage current or resistance, with C-E shorted. If the product is normal, the leakage current should be several hundreds nA and the resistance should be several tens of M Ω to infinity. If the leakage current is more than a few nA or the resistance value is less than a few M Ω , the device may be defective.

Do not apply G-E voltage in excess of 20V. When using a Volt-ohm multi-meter, make sure the internal battery voltage is below 20V.

<C-E check>

Fig.7-2 G-E check

As shown in Fig.7-3, measure the C-E leakage current or resistance, with G-E shorted. If the IGBT is normal, the leakage current should be below I_{CES} max. specified in the datasheet. Please note the following items.

- ① Be sure to connect C to (+) and E to (-). Reverse connections will conduct the FWD thus making measurement impossible.
- (2) Do not apply voltage higher than the rated value. Applying voltage higher than the rated value may destroy the device.

Fig.7-3 C-E check

3. Typical Troubles and Troubleshooting

<How to avoid dv/dt shoot through during FWD reverse recovery>

This section describes how to avoid dv/dt shoot through of the IGBT during FWD reverse recovery. Fig.7-4 shows the causes of dv/dt shoot through. In this fig., IGBT2 is reverse biased. If IGBT1 changes from off to on, FWD2 on the opposite arm goes in to reverse recover mode. At the same time, the voltage potentials of IGBT2 and FWD2 in the off-state rise, and dv/dt is generated according to the switching time of IGBT1. Since IGBT1 and IGBT2 have C_{res} , current $I = C_{res} \cdot dv/dt$ is generated through C_{res} . This current flow through R_{G} , resulting in rise of V_{GE} . If this V_{GE} exceeds the sum of the reverse bias voltage of IGBT2 and the threshold voltage V_{GE} (th), IGBT2 will be turned-on, resulting in short circuit of IGBT1 and IGBT2.

Fig.7-4 Principle of dv/dt shoot through

Fig.7-5 shows the method to avoid the shoot through.

Fig.7-5 How to avoid dv/dt shoot through

There are three methods, which are C_{GE} addition, increase of $-V_{GE}$ and increase of R_{G} . Check the effects of these measures as they differ depending on the gate drive circuit. Also, check the effect of these measures on switching loss.

The method to add C_{GE} is the way to decrease the current flowing through R_G by passing through C_{GE} . However, in order to charge/discharge the additional C_{GE} , switching speed becomes slower. Thus, just adding C_{GE} results in increase switching loss. However, by reducing R_G and adding C_{GE} , it is possible to avoid the shoot through without increasing switching loss.

Recommended C_{GE} is about two times the value of C_{ies} described in the specification sheet, and recommended R_{G} is about half the value before adding C_{GE} .

<Energizing main circuit voltage when G-E is open>

When checking the characteristics of a single device, if voltage is applied to C-E when G-E is open, current (*i*) will flow through C_{res} of the IGBT as shown in Fig.7-6. As a result, G-E capacitance is charged and the gate potential rises, causing the IGBT to turn-on. Thus, I_C flows and heat is generated, which may cause destruction. When driving the IGBT, be sure to drive it with a G-E signal. Also, be sure to discharge the main circuit voltage (C-E) to 0V before switching the gate signal.

Fig.7-7 shows an example of on-voltage measurement circuit. The measurement sequence is described with reference to this measurement circuit. First, turn-off the gate drive unit (GDU) ($V_{GE} = 0V$). Then turn-on SW1 to apply C-E voltage. Next, apply predefined forward bias voltage from the GDU to energize the IGBT, and measures the on-voltage. Lastly, turn-off the gate circuit and turn-off SW₁. This sequencing will allow for the safe measurement of device characteristics without risking destruction.

Fig.7-6 IGBT behavior when G-E is open

Fig.7-7 On-voltage measurement circuit

<Diode reverse recovery from transient on-state (short off pulse reverse recovery)>

If very short off pulses are generated when gate signal interruption happens due to noise while driving the IGBT, excessive reverse recovery overvoltage will occur. This phenomenon is called the short off pulse reverse recovery. Fig.7-8 shows the timing chart of this phenomenon.

In Fig.7-9, when an off signal T_w is generated at V_{GE} during period T_{on} in which IGBT2 is on, IGBT2 is turned off while FWD1 on the opposite arm side is turned on, and IGBT2 is immediately turned on again while FWD1 goes into reverse recovery. Normally, reverse recovery started after sufficient carriers are accumulated in the FWD. On the other hand, in the short off pulse reverse recovery, FWD goes into reverse recovery without sufficient carrier accumulation. As a result, the depletion layer spreads rapidly in the FWD, causing steep di/dt and dv/dt, and very large C-E (A-K) overvoltage as shown in the dotted line in Fig.7-8. If the overvoltage exceeds the device voltage rating, the device may be destroyed. When designing the equipment, be careful not to design a circuit that will generate such short gate signal off pulse.

FWD2

<Precautions in parallel connection>

When using IGBT to control large current, IGBTs may be connected in parallel. If the current is not balanced among the IGBTs, current may concentrate on one device and destroy it. The electrical characteristics of the IGBT as well as the wiring design, affect the current balance between parallel connected IGBT. In order to maintain current balance it is necessary to match the $V_{CE(sat)}$ values of all devices. When connecting in parallel, we recommend to use products from the same product lot.

When the main circuit wiring is uneven, uneven voltage is generated in the inductance of each wiring due to d*i*/d*t* during switching, and oscillating current flows through the control side wiring loop of the emitter connected in parallel, causing the gate voltage to oscillate. This oscillation may cause the IGBT to malfunction.

Balanced current sharing can be achieved by using symmetrical wiring to prevent the abovementioned IGBT malfunction (see Fig. 7-10).

Fig.7-10 Equivalent circuit of parallel connection

Fig.7-11(1) shows the oscillation phenomenon when the wiring inductance of the emitter is made extremely unbalanced.

A common mode coil can be inserted in each gate emitter wiring to eliminate the loop current in the emitter. Fig.7-11 (2) shows the waveforms with the common mode coil. Compared with Fig.7-11(1), oscillation is suppressed.

Fig.7-12 Parallel circuit with common mode coil inserted