

Chapter 2 Terms and Characteristics

1. Explanation of Terms	2-2
2. Characteristics of IGBT and FWD	2-4

This chapter describes the terms and characteristics.

1. Explanation of Terms

This section describes the terms used in specifications.

Table.2-1 Absolute maximum rating

Term	Symbol	Definition explanation (See specifications for test conditions)
Collector-Emitter Voltage	V _{CES}	Max. Collector-Emitter (hereinafter referred to as C-E) voltage with Gate-Emitter (G-E) shorted
Gate-Emitter Voltage	$V_{\rm GES}$	Max. G-E voltage with C-E shorted (Normally $\pm 20V$ max.)
	I _C	Max. DC collector current
Collector Current	I _{CP}	Max. pulse collector current
Diode Forward Current	I _F	Max. DC FWD current
	I _{FP}	Max. pulse FWD current
Short Circuit Withstand Time	t _{SC}	The time interval which the device can withstand in short circuit condition without failing
Collector Power Dissipation	$P_{\rm D_IGBT}$	Max. power dissipation of IGBT
FWD Power Dissipation	$P_{D_{FWD}}$	Max. power dissipation of FWD
Operating Junction Temperature	$T_{\rm vj}$	Junction temperature range during continuous operation
Storage Temperature	T _{stg}	Temperature range allowing storage or transportation without being subjected to electrical load

Table.2-2 Electrical characteristics

Term	Symbol	Definition explanation (See specifications for test conditions)
Zero Gate Voltage Collector Current	I _{CES}	Leakage current when a specified voltage is applied to C-E with G-E shorted
Gate-Emitter Leakage Current	I _{GES}	Leakage current when a specified voltage is applied to G-E with C-E shorted
Gate-Emitter Threshold Voltage	$V_{\rm GE(th)}$	G-E voltage (hereinafter, V_{GE}) at specified C-E (hereinafter, I_C) current and C-E voltage (hereinafter, V_{CE}). (It is used as a measure of V_{GE} value at which I_C begins to flow, and V_{GE} at which the IGBT begins to turn-on.)
Collector-Emitter Saturation Voltage	$V_{\rm CE(sat)}$	$V_{\rm CE}$ at a specified $I_{\rm C}$ and $V_{\rm GE}$
Input Capacitance	$C_{\rm ies}$	G-E capacitance, when a specified $V_{\rm GE}$ and $V_{\rm CE}$ are applied with C-E shorted in AC
Output Capacitance	C _{oes}	C-E capacitance, when a specified $V_{\rm GE}$ and $V_{\rm CE}$ are applied with G-E shorted in AC
Reverse Transfer Capacitance	C _{res}	C-G capacitance, when a specified $V_{\rm GE}$ and $V_{\rm CE}$ are applied with G-E and C-E shorted in AC
Gate Charge	Q _G	Amount of G-E charge to turn-on IGBT
Turn-On Delay Time	t _{d(on)}	Time from when V_{GE} reaches 10% of the max. value until I_C reaches 10% of the max. value at IGBT turn-on (See Fig.2-4)
Rise Time	t _r	Time from when $I_{\rm C}$ rises to 10% of the max. value to 90% of the max. value at IGBT turn-on (See Fig.2-4)
Turn-Off Delay Time	$t_{\rm d(off)}$	Time from when V_{GE} reaches 90% of its max. value until I_C reaches 90% of the max. value at IGBT turn-off (See Fig.2-4)
Fall Time	t _f	Time from when $I_{\rm C}$ falls from 90% of its max. value to 10% of the max. value at IGBT turn-off (See Fig.2-4)
Turn-on Energy	E_{on}	Loss that occurs during IGBT turn-on (See Fig.2-4)
Turn-off Energy	$E_{\rm off}$	Loss that occurs during IGBT turn-off (See Fig.2-4)
Reverse Recovery Energy	E _{rr}	Loss that occurs during FWD reverse recovery (See Fig.2-4)
Forward Voltage Drop	V _F	Forward voltage when a specified forward current is applied to FWD
Diode Reverse Recovery Time	t _{rr}	Time from when the current crosses 0A to 10% of the reverse recovery peak current at FWD turn-off (See Fig.2-4)
Diode Reverse Recovery Charge	Q _{rr}	Amount of charge required for reverse recovery current in FWD to disappear
Reverse Biased Safe Operating Area	RBSOA	Region of current and voltage where the IGBT can be safely turned-off under specified conditions
Thermal Resistance, Junction- Ambient	$R_{\rm th(j-a)}$	Thermal resistance between chip and surroundings without heat sink and without wind
Thermal Resistance, IGBT Junction to Case	$R_{\rm th(j-c)_IGBT}$	Thermal resistance between the IGBT chip and case
Thermal Resistance, FWD Junction to Case	$R_{\mathrm{th(j-c)}_{\mathrm{FWD}}}$	Thermal resistance between the FWD chip and case

2. Characteristics of IGBT and FWD

Discrete IGBT products include products in which a FWD is connected in anti-parallel to the IGBT, and products with only IGBT. Taking FGW40XS120C (1200V / 40A device) as an example, the explanation of various characteristics of IGBT and FWD described in the specifications etc. are shown below.

<Output Characteristics>

This characteristic shows the relationship between the drop voltage (V_{CE}) and the current (I_C) when the IGBT is in on-state, which is the loss that occurs in the IGBT. The lower the V_{CE} , the smaller the loss. Please note that these characteristics change depending on T_{vj} and V_{GE} . Generally, the output characteristic of V_{GE} = 15V is used.

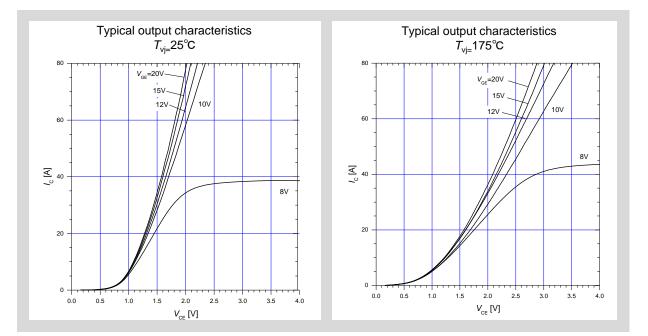


Fig.2-1 Characteristics of $V_{CE(sat)}$ - I_{C}

2-4

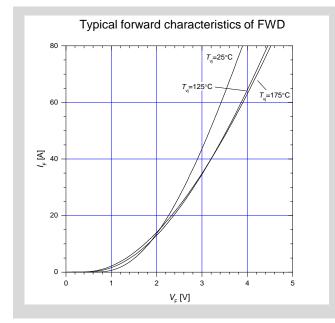


Fig.2-2 shows $V_{\rm F}$ - $I_{\rm F}$ characteristics of FWD. This characteristic changes depending on $T_{\rm vj}$.

Fig.2-2 Characteristics of $V_{\rm F}$ - $I_{\rm F}$

<Switching Characteristics>

Switching characteristics can be broadly divided into switching time and switching loss. The switching characteristics can be measured with the chopper circuit shown in Fig.2-3.

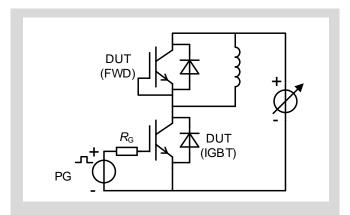


Fig.2-3 Switching characteristic measurement circuit

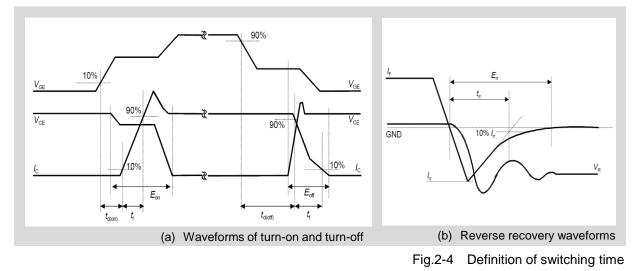


Fig.2-4 shows the definitions of switching time ($t_{d(on)}$, t_r , $t_{d(off)}$, t_f , t_{rr}) and switching loss (E_{on} , E_{off} , E_{rr}) shown in Table 2-2.

The relationship between switching time and $I_{\rm C}$ is shown in Fig.2-5, and the relationship between switching time and $R_{\rm G}$ is shown in Fig.2-6. Please note that the switching time varies depending on $I_{\rm C}$, $T_{\rm vj}$ and $R_{\rm G}$.

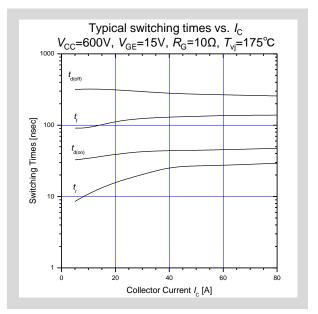


Fig.2-5 Characteristics of switching time- $I_{\rm C}$

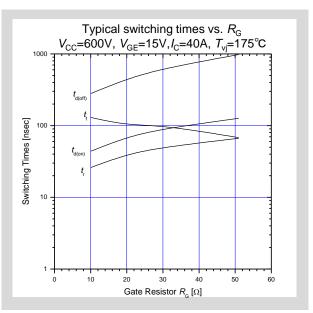


Fig.2-6 Characteristics of switching time-R_G

Fig.2-7 shows the relationship between the reverse recovery time of FWD and $I_{\rm F}$. The reverse recovery time varies depending on $I_{\rm F}$, $T_{\rm vj}$, and $R_{\rm G}$.

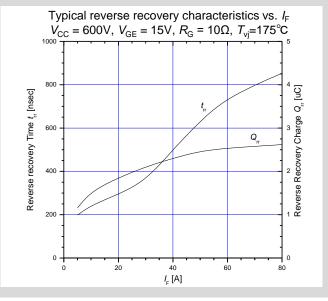


Fig.2-7 Characteristics of t_{rr} - l_{F}

Switching loss (E_{on} , E_{off} , E_{rr}) occurs when the IGBT switches (turn-on, turn-off). Fig.2-8 shows the relationship between E_{on} , E_{off} and I_{C} , and Fig.2-9 shows the relationship between E_{on} , E_{off} and R_{G} . The relationship between E_{rr} and I_{F} is shown in Fig.2-10. Please note that this characteristic varies depending on T_{vj} , V_{GE} , I_{C} , I_{F} , and R_{G} .

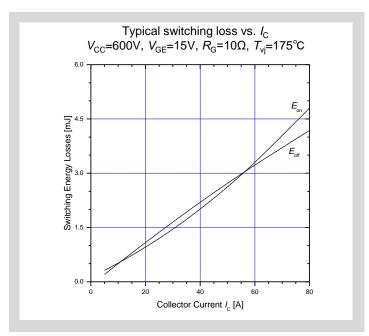


Fig.2-8 Characteristics of E_{on} , E_{off} - I_{C}

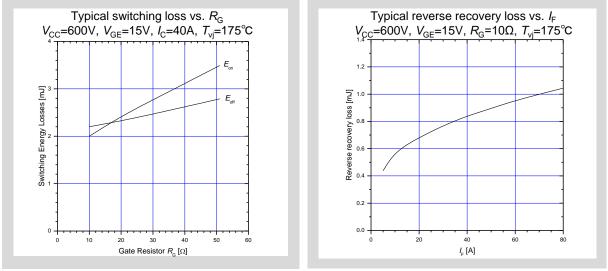


Fig.2-9 Characteristics of E_{on} , E_{off} - R_{G}

Fig.2-10 Characteristics of E_{rr}-I_F

<Capacitance characteristics>

The IGBT has parasitic capacitance due to its structure. The Parasitic capacitance includes C_{ies} , C_{oes} , and C_{res} . The relationship between V_{GE} and Q_{G} is shown in Fig.2-11, and the relationship between C_{ies} , C_{oes} , C_{res} and V_{CE} is shown in Fig.2-12.

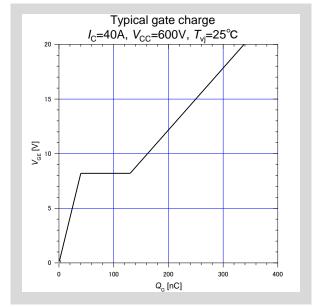


Fig.2-11 Characteristics of V_{GE}-Q_G

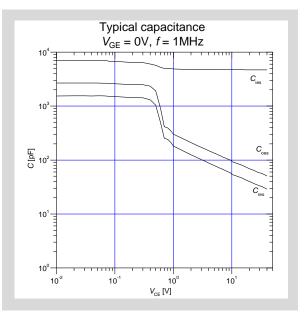


Fig.2-12 Characteristics of C_{ies}, C_{oes}, C_{res}-V_{CE}

<Reverse Biased Safe Operating Area (RBSOA)>

Fig.2-13 shows the region of V_{CE} - I_C (RBSOA) where the IGBT can safely turn-off under specified conditions.

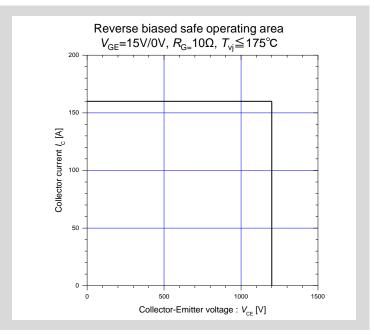


Fig.2-13 Reverse Biased Safe Operating Area (RBSOA)

<Transient thermal resistance characteristics>

Fig.2-14 show the transient thermal resistance characteristics. The thermal resistance value is the value obtained by dividing the temperature change that occurs by the applied power when a single constant power pulse is applied to the product. The value of thermal resistance expressed in pulse time is the transient thermal resistance characteristic.

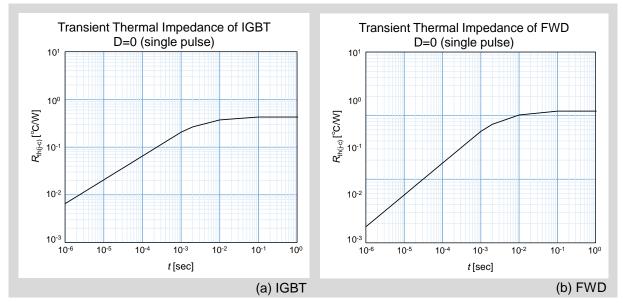


Fig.2-14 Characteristics of transient thermal resistance characteristics