T-type **Advanced 3-level Inverter Module**

Power dissipation and comparison tables

1. Introduction of Advanced 3-level Inverter Module
2. Inverter Mode comparison in 300A modules
3. Rectifier Mode comparison in 300A modules
4. RB-IGBT device characteristics

Feb. 2012

Fuji Electric Co., Ltd.

Electronic Device Business headquarters,

Technology Division
2-level, NPC and A-NPC 3-level control

A-NPC 3-level is suitable topology for High efficiency alternative Energy systems.

<table>
<thead>
<tr>
<th>Type</th>
<th>2-level Inverter</th>
<th>NPC 3-level Inverter</th>
<th>A-NPC 3-level with Reverse series</th>
<th>A-NPC 3-level with RB-IGBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device</td>
<td>IGBT:1200V</td>
<td>IGBT:600V</td>
<td>IGBT:1200V +600V(Reverse series)</td>
<td>IGBT:1200V +600V(RB-IGBT)</td>
</tr>
<tr>
<td>Output Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-loss</td>
<td>Small</td>
<td>Large</td>
<td>Large</td>
<td>Small</td>
</tr>
<tr>
<td>SW-loss</td>
<td>Large</td>
<td>Small</td>
<td>Small</td>
<td>Small</td>
</tr>
<tr>
<td>Filter loss</td>
<td>Large</td>
<td>Small</td>
<td>Small</td>
<td>Small</td>
</tr>
<tr>
<td>Composing</td>
<td>Easy</td>
<td>Complication</td>
<td>Easy</td>
<td>Easy</td>
</tr>
<tr>
<td>Total</td>
<td>Normal</td>
<td>Normal</td>
<td>Good</td>
<td>Excellent</td>
</tr>
</tbody>
</table>
2-level, NPC and A-NPC 3-level control comparison, in Inverter Mode

A-NPC 3-level is suitable topology for High efficiency alternative Energy systems.

<table>
<thead>
<tr>
<th>2-level Inverter (2L)</th>
<th>NPC 3-level Inverter (NPC)</th>
<th>A-NPC 3-level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1, T2, T3, T4</td>
<td>T1, T2, T3, T4</td>
<td>Reverse series</td>
</tr>
<tr>
<td>IGBT: 1200V</td>
<td>IGBT: 600V</td>
<td>RB-IGBT: 600V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Losses in Inverter Mode (W)</th>
<th>2-level</th>
<th>NPC 3-level</th>
<th>A-NPC 3-level (Reverse series)</th>
<th>A-NPC 3-level (RB-IGBT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>2109.1</td>
<td>1799.7</td>
<td>1526.6</td>
<td>1504.8</td>
</tr>
<tr>
<td>2000</td>
<td>1799.7</td>
<td>1526.6</td>
<td>1504.8</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>1526.6</td>
<td>1504.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>1504.8</td>
<td>1504.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>1504.8</td>
<td>1504.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1504.8</td>
<td>1504.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 2-level: 100% efficiency
- NPC 3-level: 85.3% efficiency
- A-NPC 3-level (Reverse series): 72.4% efficiency
- A-NPC 3-level (RB-IGBT): 71.3% efficiency

IGBT: 1200V, IGBT: 600V, IGBT: 1200V/600V, RB-IGBT: 600V
2-level, NPC and A-NPC 3-level control comparison, in Rectifier Mode

A-NPC 3level is suitable topology for High efficiency alternative Energy systems.

<table>
<thead>
<tr>
<th>2-level Inverter (2L)</th>
<th>NPC 3-level Inverter (NPC)</th>
<th>A-NPC 3-level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Reverse series</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGBT:1200V</td>
<td>IGBT:600V</td>
<td>IGBT:1200V/600V, RB-IGBT:600V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Losses in Rectifier Mode (W)</th>
<th>100%</th>
<th>84.0%</th>
<th>73.4%</th>
<th>72.2%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2086.2</td>
<td>1752.9</td>
<td>1531.3</td>
<td>1508.1</td>
</tr>
<tr>
<td>1500</td>
<td>573.5</td>
<td>635.0</td>
<td>602.1</td>
<td>602.1</td>
</tr>
<tr>
<td>1000</td>
<td>562.7</td>
<td>326.3</td>
<td>336.0</td>
<td>336.0</td>
</tr>
<tr>
<td>500</td>
<td>950.0</td>
<td>326.3</td>
<td>570.0</td>
<td>570.0</td>
</tr>
<tr>
<td>0</td>
<td>570.0</td>
<td>570.0</td>
<td>570.0</td>
<td>570.0</td>
</tr>
</tbody>
</table>

IGBT: 1200V / 600V / 1200V/600V / RB-IGBT: 600V
Fuji A-NPC 3-level inverter Module “100A Type”

Type name : 12MBI100VN-120-50
12MBI100VX-120-50
T1,T2 : 1200V/100A
T3,T4 : 600V/100A
For 400V class AC output

Equivalent circuit
Fuji A-NPC 3-level inverter Module “300A Type”

Type name : 4MBI300VG-120R-50
T1, T2 : 1200V/300A
T3, T4 : 600V/300A
For 400V class AC output

Equivalent circuit
(T3 and T4 are RB-IGBT)

Package outline
Inverter Mode comparison in 300A modules

2-level; 2MBI300VH-120-50
NPC 3-level; 2MBI300VB-060-50 series
Advanced 3-level; 4MBI300VG-120R-50

Conditions;
100kVA Inverter
AC 400V, Io=145A, cosθ=1
Vdc=660V(330V+330V), Modulation rate =0.98
Tj=125deg,
Rg(T1,T2)=+10/-1ohm, Rg(T3,T4)=+8.2/-39ohm
Total Loss Comparison in “Inverter Mode”

✓ Advanced 3-level module achieves lowest loss in 30kHz and less carrier frequency
Device Loss comparison in “Inverter Mode”

✓ Advanced 3-level module achieves lowest loss in 30kHz and less carrier frequency
Loss Comparison in fc=5kHz “Inverter Mode”

- Total loss of A-3level Inverter is lowest in 5kHz “Inverter Mode”
- 30% loss reduction from 2-level Inverter
- 17% loss reduction from NPC 3-level Inverter
Device Loss Analysis in fc=5kHz “Inverter Mode”

- T1 and T4 FWD of A-3 level is not flowed the current.

<table>
<thead>
<tr>
<th>Device Loss (W)</th>
<th>2-Level</th>
<th>NPC 3-Level</th>
<th>A-3 Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1,T2 FWD</td>
<td>29.1 Prr</td>
<td>9.8 Pf</td>
<td>9.0 Prr</td>
</tr>
<tr>
<td></td>
<td>9.8 Pf</td>
<td>84.0 Psat</td>
<td>24.7 Psat</td>
</tr>
<tr>
<td></td>
<td>25.7 Pon</td>
<td>16.3 Poff</td>
<td>20.7 Poff</td>
</tr>
<tr>
<td></td>
<td>89.6 Psat</td>
<td>10.9 Pon</td>
<td>17.4 Pon</td>
</tr>
<tr>
<td>T1,T2 IGBT</td>
<td>29.1 Prr</td>
<td>84.0 Psat</td>
<td>83.9 Psat</td>
</tr>
<tr>
<td>T2,T3 IGBT</td>
<td>9.8 Pf</td>
<td>16.3 Poff</td>
<td>20.7 Poff</td>
</tr>
<tr>
<td>CD1,2 FWD</td>
<td>17 Pf</td>
<td>10.9 Pon</td>
<td>17.4 Pon</td>
</tr>
<tr>
<td>T3,T4 RB-IGBT</td>
<td>9.0 Prr</td>
<td>17.4 Pon</td>
<td>83.9 Psat</td>
</tr>
</tbody>
</table>
Rectifier Mode comparison in 300A modules

2-level; 2MBI300VH-120-50
NPC 3-level; 2MBI300VB-060-50 series
Advanced 3-level; 4MBI300VG-120R-50

Conditions;
100kVA Inverter
AC 400V, Io=145A, cosθ=1
Vdc=660V(330V+330V), Modulation rate =0.98
Tj=125deg
Rg(T1,T2)=+10/-1ohm, Rg(T3,T4)=+8.2/-39ohm
Total Loss Comparison in “Rectifier Mode”

✓ Advanced 3-level module achieves lowest loss in 20kHz and less carrier frequency
Device Loss comparison in “Rectifier Mode”

✓ Advanced 3-level module achieves lowest loss in 20kHz and less carrier frequency

Device Loss as 5kHz loss 100%
Loss Comparison in fc=5kHz “Rectifier Mode”

- Total loss of A-3level Inverter is lowest in 5kHz “Rectifier Mode”
- 30% loss reduction from 2-level Inverter
- 14% loss reduction from NPC 3-level Inverter

![Diagram showing dissipation losses for different inverters at different frequencies.](image-url)
Device Loss Analysis in fc=5kHz “Rectifier Mode”

✓ T1 and T4 FWD of A-3 level is not flowed the current.

- T1 and T4 FWD of A-3 level is not flowed the current.

Device Loss (W)

<table>
<thead>
<tr>
<th>2level</th>
<th>NPC 3level</th>
<th>A-3level</th>
</tr>
</thead>
<tbody>
<tr>
<td>85.5</td>
<td>61.1</td>
<td>75.6</td>
</tr>
<tr>
<td>29.1</td>
<td>17.1</td>
<td>21.5</td>
</tr>
<tr>
<td>39.0</td>
<td>10.9</td>
<td>14.0</td>
</tr>
<tr>
<td>10.1</td>
<td>17.3</td>
<td>24.7</td>
</tr>
<tr>
<td></td>
<td>13.4</td>
<td>20.5</td>
</tr>
<tr>
<td></td>
<td>16.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.1</td>
<td></td>
</tr>
</tbody>
</table>

- T1, T2 FWD
- T2, T3 FWD
- T3, T4 RB-IGBT
- T1, T2 IGBT
Reduction control of RB-IGBT leakage current
RB-IGBT Leakage Current Loss in “300A type”

- RB-IGBT leakage Current loss is extremely low at Tj=125deg
- Junction temperature, Tj, must be below 125deg

![Bar chart showing device losses (W) for A-3 Level module with and without leakage current reduction control]

A-3 Level module
- With Leakage Current Reduction Control
- Without Leakage Current Reduction Control

Device losses (W)

1504.8
1521.2
651.9
570.0

Leakage Current Loss
Von Loss
SW Loss
Filter Loss

+0.01%
Only
100%
100.01%
RB-IGBT Leakage current

Leakage current can be reduced with $V_{g}=+15V$

$V_{g}=0V$ ~ $-15V$

$V_{g}=+15V$
RB-IGBT device characteristics
Cross sectional diagram of RB-IGBT

Carrier generation at dicing surface
Blocking voltage characteristics of RB-IGBT

![Graph showing blocking voltage characteristics of RB-IGBT (V_{GE} = +15V) and Conventional NPT-IGBT (V_{GE} = +15V). The graph includes blocking voltage characteristics at Tj=25°C.](image)
Trade-off relationship for RB-IGBT

600V/100A device

Vce(sat) @Tj=125degC

Eoff (mJ) @Tj=125degC

RB-IGBT

IGBT + FWD
The switching waveforms of RB-IGBT

Condition:
T3 switching T1-FWD recovery mode
Tj=RT, Vcc2=400V, Ic=300A, RG=+8.2/-39ohm
VGE(T3)=+/-15V, VGE(T4)=+15V, snubber=1.84uF, Ls=34nH

Condition:
T1 switching T4 RB-IGBT recovery mode
Tj=RT, Vcc2=400V, Ic=300A, RG=+10ohm
VGE(T1)=+/-15V, VGE(T4)=+15V, snubber=1.84uF, Ls=34nH

Fuji RB-IGBT can be realized of fast switching operation same as normal IGBT and FWD.
RB-IGBT Turn-On, Turn-OFF measurement Circuit

- Wiring Inductance
- V_{cc2} 400V
- $L_s = 34\text{nH}$
- $1.8\mu\text{F}$

Diagram:
- $V_{GE} = +15\text{V}$
- $V_{GE} = -15\text{V}$
- I_c (current flow indicator)
- V_{ce}
- V_{cc2}
- T_1, T_2, T_3, T_4
- M403

Diode D notation and connections.
RB-IGBT Reverse Recovery measurement Circuit

Wiring Inductance

Vcc2

400V

1.8uF

Ls=34nH

VGE = -15V

T3

T1

T4

VGE = +15V

VGE = -15V

Vce

M403

M

N

IGBT

Reverse Recovery measurement Circuit

Ic
Mechanism of RB-IGBT Leakage current

Mechanism at reverse voltage

Generation of hole at Reverse voltage area
- Electron flow through the emitter area
- This electron is base current of PNP transistor
- Generation of Hole at P-layer
- Generation of Large leakage current

Reverse voltage area
Reduction method of Leakage current

(i) G-E short

- $V_{GE} = +15V$
- Electron flows the n^+ of Emitter
- Not generation of Hole
- “pn diode operation”
- Small Leakage current

(ii) $V_{GE} = +15V$

- Electron flows the n^+ of Emitter
- Not generation of Hole
- “pn diode operation”
- Small Leakage current

pnp Base Open

⇒ Generation of hole from emitter
⇒ Large Leakage current

Reverse Voltage
When RB-IGBT uses the FWD mode, please input the Vge = +15V. Because the Leakage current of RB-IGBT is larger when the Vge=0V. RB-IGBT leakage current can be reduced with Vge=+15V.

When T3 uses the FWD mode, please input the Vge = +15V of T3.
12 in 1, 100A type module
Comparison of Device Loss (12in1 module “100A Type”)

- “100A Type” switching loss is same level of NPC 3level.
- The Total loss of “100A Type A-3level” is the smallest in all the frequency ranges.
- There is no crossing point.

Conditions:
- 20kVA Inverter
- AC 400V, Io=30A, cosθ=0.9
- Vdc=700V(350V+350V)
- Modulation rate =0.8
- Tj=125C, Rg=datasheet value

Graph:
- 2-Level: 7MBR100VN120-50
- NPC 3-level: 7MBR100VZ060-50
- A-NPC 3-level : 12MBI100VN-120-50
Notes

1. This technical note contains the product specifications, characteristics, data, materials, and structures as of January 2012. The contents are subject to change without notice for specification changes or other reasons. When using a product listed in this Catalog, be sure to obtain the latest specifications.

2. All applications described in this Catalog exemplify the use of Fuji's products for your reference only. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Co., Ltd. is (or shall be deemed) granted. Fuji Electric Co., Ltd. makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights which may arise from the use of the applications described herein.

3. Although Fuji Electric Co., Ltd. is enhancing product quality and reliability, a small percentage of semiconductor products may become faulty. When using Fuji Electric semiconductor products in your equipment, you are requested to take adequate safety measures to prevent the equipment from causing a physical injury, fire, or other problem if any of the products become faulty. It is recommended to make your design fail-safe, flame retardant, and free of malfunction.

4. The products introduced in this technical note are intended for use in the following electronic and electrical equipment which has normal reliability requirements.
 • Computers • OA equipment • Communications equipment (terminal devices) • Measurement equipment
 • Machine tools • Audiovisual equipment • Electrical home appliances • Personal equipment • Industrial robots etc.

5. If you need to use a product in this Catalog for equipment requiring higher reliability than normal, such as for the equipment listed below, it is imperative to contact Fuji Electric Co., Ltd. to obtain prior approval. When using these products for such equipment, take adequate measures such as a backup system to prevent the equipment from malfunctioning even if a Fuji's product incorporated in the equipment becomes faulty.
 • Transportation equipment (mounted on cars and ships) • Trunk communications equipment
 • Traffic-signal control equipment • Gas leakage detectors with an auto-shut-off feature
 • Emergency equipment for responding to disasters and anti-burglary devices • Safety devices
 • Medical equipment

6. Do not use products in this Catalog for the equipment requiring strict reliability such as the following and equivalents to strategic equipment (without limitation).
 • Space equipment • Aeronautic equipment • Nuclear control equipment
 • Submarine repeater equipment

7. Copyright ©1996-2012 by Fuji Electric Co., Ltd. All rights reserved. No part of this technical note may be reproduced in any form or by any means without the express permission of Fuji Electric Co., Ltd.

8. If you have any question about any portion in this Catalog, ask Fuji Electric Co., Ltd. or its sales agents before using the product. Neither Fuji Electric Co., Ltd. nor its agents shall be liable for any injury caused by any use of the products not in accordance with instructions set forth herein.