Fuji Industrial IGBT Module
Standard Module 2in1
(M263, M274, M275, M276, M277)

Mounting Instruction
CONTENTS

1. Scope of application 2

2. Mounting the module to heat sink 3
 2-1. Surface conditions of heat sink 3
 2-2. Application of thermal grease 4
 2-3. Screw fastening to heat sink 5

3. Main terminal connection 6
 3-1. Bus bar connection 6
1. Scope of application

This document describes how to safely mount and use Standard Module 2in1 for the following part numbers.

[X-series]
M263: 2MBIxxxXAA-xxx-5x
M274: 2MBIxxxXBE-xxx-5x
M275: 2MBIxxxXDE-xxx-5x
M276: 2MBIxxxXHA-xxx-5x
M277: 2MBIxxxXEE-xxx-5x

[V-series]
M263: 2MBIxxxVA-xxx-5x
M274: 2MBIxxxVB-xxx-5x
M275: 2MBIxxxVD-xxx-5x
M276: 2MBIxxxVH-xxx-5x
M277: 2MBIxxxVE-xxx-5x

When handling the module, in addition to the contents described in this document, please check the Warning and Caution in the module’s specification too.
2. Mounting the module to heat sink

2-1. Surface conditions of heat sink
Design the heat sink so that the following surface conditions are satisfied. If the roughness and flatness do not satisfy the conditions, it may cause an increase in contact thermal resistance, or insulation failure due to package cracking.

1. The surface roughness \((R_z) \) of the heat sink should be 10\(\mu \)m or less.
2. The surface flatness of the heat sink should be within +50\(\mu \)m (-50\(\mu \)m) per 100mm, taking the straight line connecting the center points of the two screw mounting holes as reference. Here, "+" (plus) is defined when the heat sink has a convex shape, and "-" (minus) is defined when the heat sink has a concave shape. If both shapes exist, the sum of the absolute values of the maximum and minimum values should be 50\(\mu \)m or less.

Figure 1 shows the definition of surface roughness and flatness of the heat sink.

![Diagram of heat sink surface flatness and roughness](image)
2-2. Application of thermal grease

It is recommended to apply thermal grease between the module’s base plate and the heat sink to ensure heat dissipation to the heat sink.

If the properties, amount, and application method of the thermal grease are not appropriate, it may result in poor heat dissipation and lead to thermal failure. Table 1 shows the recommended thermal grease properties and thickness. Assuming that the thickness is uniform, the required amount (weight) of thermal grease can be calculated from the following formula.

\[
\text{Thermal grease weight (g) x } 10^4 = \frac{\text{Thermal grease thickness (μm)} \times \text{Base plate area of module (cm}^2\) \times \text{Density of thermal grease (g/cm}^3\)}
\]

We recommend using the stencil mask method to control the appropriate thermal grease thickness (Figure. 2). The recommended stencil mask pattern (Table 2) can be provided upon request.

It is recommended to confirm that the thermal grease is spread over the entire module’s base plate by removing the module after mounting and check the extent of spreading.

Table 1. Recommended properties of thermal grease

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Recommended value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penetration (typ.)</td>
<td>-</td>
<td>>= 340</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>W/m·K</td>
<td>>= 1</td>
</tr>
<tr>
<td>Thermal grease thickness</td>
<td>μm</td>
<td>100 +/- 30</td>
</tr>
</tbody>
</table>

Figure 2. Thermal grease application

Table 2. Stencil mask pattern

- Squeegee (for applying thermal grease)
- Stencil mask
- Stencil mask fixing tool
2-3. Screw fastening to heat sink
This section describes how to tighten the screws when mounting the module to heat sink.

1. Use M5 or M6 screws to fix the module to heat sink.
2. To fix the module with even force, first perform temporary tightening with 1/3 of the final tightening torque. Figure 3 shows the tightening sequence.
3. Perform final tightening in the same sequence as temporary tightening. The final tightening torque should be within the following range.

<table>
<thead>
<tr>
<th></th>
<th>Tightening torque</th>
<th>Tightening sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporary</td>
<td>1/3 of the final</td>
<td>(1)→(2)</td>
</tr>
<tr>
<td>tightening</td>
<td>tightening torque</td>
<td></td>
</tr>
<tr>
<td>Final</td>
<td>M263: 3.0~5.0Nm</td>
<td>(1)→(2)</td>
</tr>
<tr>
<td></td>
<td>M274: 2.5~3.5Nm</td>
<td></td>
</tr>
</tbody>
</table>

(a) M263, M274

<table>
<thead>
<tr>
<th></th>
<th>Tightening torque</th>
<th>Tightening sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporary</td>
<td>1/3 of the final</td>
<td>(1)→(2)→(3)→(4)</td>
</tr>
<tr>
<td>tightening</td>
<td>tightening torque</td>
<td></td>
</tr>
<tr>
<td>Final</td>
<td>M275, M276, M277</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0~6.0Nm</td>
<td></td>
</tr>
</tbody>
</table>

(b) M275, M276, M277

Figure 3. Tightening torque and tightening sequence
3. Main terminal connection

3-1. Bus bar connection

Table 2. Recommended specifications for bus bar connection

<table>
<thead>
<tr>
<th></th>
<th>M263</th>
<th>M274</th>
<th>M275, M276, M277</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw size</td>
<td></td>
<td>M5</td>
<td>M6</td>
</tr>
<tr>
<td>Screw length</td>
<td></td>
<td></td>
<td>Bus bar thickness + (7~9mm)</td>
</tr>
<tr>
<td>Tightening torque</td>
<td>2.5~5.0Nm</td>
<td>2.5~3.5Nm</td>
<td>2.5~5.0Nm</td>
</tr>
<tr>
<td>Allowable terminal temperature</td>
<td></td>
<td>>=100°C</td>
<td></td>
</tr>
<tr>
<td>Allowable terminal pull force</td>
<td></td>
<td>>=40N</td>
<td></td>
</tr>
</tbody>
</table>

<Important notes>
Do not apply excessive force to the module main terminals when connecting to bus bar. The force applied to the end of the bus bar is much greater than at the main terminal because the moment of force is proportional to the bus bar length. Also, do not tighten the screws if the main terminal and the bus bar is misaligned. This may cause damage to the terminals as mechanical stress is continuously applied to the terminals.
Warning:

The contents in this manual (product specifications, characteristics, data, materials, structure, etc.) are as of June 2021. The contents are subject to change without prior notice due to changes in product specifications or for other reasons. When using a product described in this manual, please obtain the product’s latest specification and check the data.

This manual does not describe all applications and mounting conditions. Therefore, it is necessary to evaluate under actual usage conditions and confirm the mechanical characteristics, electrical characteristics, thermal characteristics, lifetime, etc.

The order in which CONTENTS is described in this manual does not indicate the order in which the products should be mounted. Please consider and decide the installation process.

The applications described in this manual are illustrative of typical applications using Fuji Electric's semiconductor products. This manual do not warrant or grant licenses for the enforcement of industrial property rights or other rights.
Cautions

(1) Transportation
Transport the carton box with the appropriate side facing up. Otherwise, the product may be subject to unexpected stress, which may result in bending of terminals, distortion in the resin package etc. Furthermore, throwing or dropping the product can cause significant damage to the product. If the product gets wet, it may lead to destruction or malfunction. Please take sufficient measures against rain and freezing.

(2) Storage
Please manage the storage location so that the temperature is 5 to 35°C and the humidity is 45 to 75%. Condensation may form on the surface of semiconductor devices when there are sudden temperature changes. Avoid such environment and store in a place where temperature changes are minimal. If more than a year has passed since the product was manufactured under these storage conditions, confirm that the terminal solderability is not deteriorated before mounting.
Avoid storing in a place where corrosive gas is generated or where there is a lot of dust.
When storing, make sure that no external force or load is applied to the semiconductor device.
Store the terminals of semiconductor devices in an unprocessed state. If the terminals are stored after the terminal is processed, soldering defects may occur when mounting the product due to rust.

(3) Assembly environment
The semiconductor device in the power module is very vulnerable to electrostatic discharge (ESD). If excessive static electricity is applied to the control terminal, the device might be destroyed. Take appropriate measures for ESD in the assembly environment within the scope described in the IGBT Module Application Manual (Chapter 3-2).

(4) Operating environment
If the product is used in an environment exposed to acids, organic substances, and corrosive gases (hydrogen sulfide gas, sulfuric acid gas, etc.), the product’s performance and appearance may deteriorate.