Chapter 5
Cooling Design

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cooler (Heat Sink) Selection Method</td>
<td>5-2</td>
</tr>
<tr>
<td>2. Notes on Heat Sink Selection</td>
<td>5-2</td>
</tr>
</tbody>
</table>
1 Cooler (Heat Sink) Selection Method

- To safeguard operation of the IGBT, make sure the junction temperature T_j does not exceed $T_{j\text{max}}$. Cooling should be designed in such a way that ensures that T_j is always below $T_{j\text{max}}$ even in abnormal states such as overload operation as well as under the rated load.
- Operation of IGBT at temperatures higher than $T_{j\text{max}}$ could result in damage to the chips. In the IPM, the $T_{j\text{OH}}$ protection function operates when the chip temperature of IGBT exceeds $T_{j\text{max}}$. However, if the temperature rises too quickly, the chip may not be protected.
- Likewise, note that the chip temperature of FWD should not exceed $T_{j\text{max}}$.
- When selecting the cooler (heat sink), always measure the temperature directly under the center of the chip. The Econo IPM series in particular is designed with operational preconditions for servo applications, etc., in which the temperature increases/decreases in a short time, so care is required in regard to heat accumulation when using under other conditions. As the structure and design place special importance upon compactness, there is a tendency for heat to accumulate in the power chip located at the center. For the chip layout, refer to the IPM internal structure drawing: MT6M5313. For the concrete design, refer to the following document.

"IGBT MODULE APPLICATION MANUAL REH984"

Contents:
- Power dissipation loss calculation
 - Selecting heat sinks
 - Heat sink mounting precautions
 - Troubleshooting

2 Notes on Heat Sink Selection

How to select heat sinks is described in the manual REH982. Note also the following points.

- Flatness of the heat sink surface
 Flatness between mounting screw pitches: 0 to $+100 \, \mu$m, roughness: $10 \, \mu$m or less

 If the heat sink surface is concave, a gap occurs between the heat sink and the IPM, leading to deterioration of cooling efficiency.

 If the flatness is $+100 \, \mu$m or more, the copper base of the IPM is deformed and cracks could occur in the internal isolating substrates.
1. This Catalog contains the product specifications, characteristics, data, materials, and structures as of February 2004. The contents are subject to change without notice for specification changes or other reasons. When using a product listed in this Catalog, be sure to obtain the latest specifications.

2. All applications described in this Catalog exemplify the use of Fuji's products for your reference only. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Device Technology Co., Ltd., is (or shall be deemed) granted. Fuji Electric Device Technology Co., Ltd., makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights which may arise from the use of the applications described herein.

3. Although Fuji Electric Device Technology Co., Ltd., is enhancing product quality and reliability, a small percentage of semiconductor products may become faulty. When using Fuji Electric semiconductor products in your equipment, you are requested to take adequate safety measures to prevent the equipment from causing a physical injury, fire, or other problem if any of the products become faulty. It is recommended to make your design fail-safe, flame retardant, and free of malfunction.

4. The products introduced in this Catalog are intended for use in the following electronic and electrical equipment which has normal reliability requirements.
 - Computers
 - OA equipment
 - Communications equipment (terminal devices)
 - Measurement equipment
 - Machine tools
 - Audiovisual equipment
 - Electrical home appliances
 - Personal equipment
 - Industrial robots etc.

5. If you need to use a product in this Catalog for equipment requiring higher reliability than normal, such as for the equipment listed below, it is imperative to contact Fuji Electric Device Technology Co., Ltd., to obtain prior approval. When using these products for such equipment, take adequate measures such as a backup system to prevent the equipment from malfunctioning even if a Fuji's product incorporated in the equipment becomes faulty.
 - Transportation equipment (mounted on cars and ships)
 - Trunk telecommunications equipment
 - Traffic-signal control equipment
 - Gas leakage detectors with an auto-shut-off feature
 - Emergency equipment for responding to disasters and anti-burglary devices
 - Safety devices

6. Do not use products in this Catalog for the equipment requiring strict reliability such as (without limitation)
 - Space equipment
 - Aeronautic equipment
 - Nuclear control equipment
 - Submarine repeater equipment
 - Medical equipment

7. Copyright © 1996-2004 by Fuji Electric Device Technology Co., Ltd. All rights reserved.
 No part of this Catalog may be reproduced in any form or by any means without the express permission of Fuji Electric Device Technology Co., Ltd.

8. If you have any question about any portion in this Catalog, ask Fuji Electric Device Technology Co., Ltd. or its sales agents before using the product.
 Neither Fuji Electric Device Technology Co., Ltd. nor its agents shall be liable for any injury caused by any use of the products not in accordance with instructions set forth herein.