Measurement of the Case Temperature

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Econo IPM</td>
<td></td>
</tr>
<tr>
<td>600V series (Package: P622) Chip layout</td>
<td>2</td>
</tr>
<tr>
<td>2. Econo IPM</td>
<td></td>
</tr>
<tr>
<td>1200V series (Package: P622) Chip layout</td>
<td>7</td>
</tr>
<tr>
<td>3. Measurement of the case temperature</td>
<td>11</td>
</tr>
<tr>
<td>4. R-IPM series (Package: P619)</td>
<td></td>
</tr>
<tr>
<td>Chip layout</td>
<td>14</td>
</tr>
</tbody>
</table>
Econo IPM 600V series (Package: P622)

Chip layout Dimensions in mm

1.1 600V/150A
7 in one package

6 in one package
1.2 600V/100A

7 in one package

6 in one package
1.3 600V/75A

7 in one package

6 in one package
1.4 600V/50A

7 in one package

6 in one package
Econo IPM 1200V series (Package: P622)

Chip layout Dimensions in mm

2.1 1200V/75A

7 in one package

6 in one package
2.2 1200V/50A

7 in one package

6 in one package
2.3 1200V/25A

7 in one package

6 in one package
Measurement of the case temperature

- Carve a groove on the back of the copper base plate, as shown in the figure below.
- Determine the groove size according to the outer dimensions of the thermocouple used.
- Be careful not to carve a groove that is too deep, which would degrade discharge characteristics.
- Attach the thermocouple such that the junction of different types of metal and the thermocouple is immediately under the IGBT chip.
- Bond the thermocouple to the plate, and fill the space in the groove with a thermal compound.

Bottom view of the base
Dimensions in mm

600V/50A, 75A: View from the base bottom

![Image of 600V/50A, 75A](image)

600V/100A, 150A, 1200V/75A: View from the base bottom

![Image of 600V/100A, 150A, 1200V/75A](image)
1200V/25A: View from the base bottom

1200V/50A: View from the base bottom
4 R-IPM series

Chip layout Dimensions in mm

4.1 600V/20A (Package: P619)