



Fuji Automotive IGBT Module M653 Series 6MBI800XV-075V-01

**Application Manual** 

August 2019 Rev.1.2

Fuji Electric Co., Ltd.

MT5F33743

© Fuji Electric Co., Ltd. All rights reserved.



## Warning:

This manual contains the product specifications, characteristics, data, materials, and structures as of August 2019.

The contents are subject to change without notice for specification changes or other reasons. When using a product listed in this catalog, be sure to obtain the latest specifications.

All applications described in this manual exemplify the use of Fuji's products for your reference only. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Co., Ltd. is (or shall be deemed) granted. Fuji Electric Co., Ltd. makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights which may arise from the use of the applications described herein.





#### (1)During transportation and storage

Keep locating the shipping carton boxes to suitable side up. Otherwise, unexpected stress might affect to the boxes. For example, bend the terminal pins, deform the inner resin case, and so on. When you throw or drop the product, it gives the product damage.

If the product is wet with water, that it may be broken or malfunctions, please subjected to sufficient measures to rain or condensation.

Temperature and humidity of an environment during transportation are described in the specification sheet. There conditions shall be kept under the specification.

#### (2)Assembly environment

Since this power module device is very weak against electro static discharge, the ESD countermeasure in the assembly environment shall be suitable within the specification described in specification sheet. Especially, when the conducting pad is removed from control pins, the product is most likely to get electrical damage.

#### (3)Operating environment

If the product had been used in the environment with acid, organic matter, and corrosive gas (hydrogen sulfide, sulfurous acid gas), the product's performance and appearance can not be ensured easily.



## CONTENTS

| Chapter 1 Basic Concept and Features                           | 1-1  |
|----------------------------------------------------------------|------|
| 1. Basic Concept of the Automotive IGBT Module                 | 1-2  |
| 2. Direct Liquid-cooling Structure                             | 1-3  |
| 3. Feature of X-series RC-IGBT Chips                           | 1-4  |
| 4. On-chip Sensors                                             | 1-6  |
| 5. Application of High-Strength Soldering Material             | 1-6  |
| 6. Circuit Configuration                                       | 1-7  |
| 7. Numbering System                                            | 1-8  |
|                                                                |      |
| Chapter 2 Terms and Characteristics                            | 2-1  |
| 1. Description of Terms                                        | 2-2  |
| 2. Cooling Performance of the Automotive IGBT Module           | 2-5  |
|                                                                |      |
| Chapter 3 Heat Dissipation Design Method                       | 3-1  |
| 1. Power Dissipation Loss Calculation                          | 3-2  |
| 2. Usage of the Cooler with Water Jacket                       | 3-7  |
| 3. Flange Adapter Kit                                          | 3-10 |
|                                                                |      |
| Chapter 4 Troubleshooting                                      | 4-1  |
| 1. Troubleshooting                                             | 4-2  |
|                                                                |      |
| Chapter 5 Precautions for Use                                  | 5-1  |
| 1 Maximum Junction Temperature T                               | 5-2  |
| 2 Short-Circuit Protection                                     | 5-2  |
| 3 Over Voltage Protection and Safety Operation Area            | 5-2  |
| 4 Operation Condition and Dead Time Setting                    | 5-7  |
| 5. Parallel Connections                                        | 5-8  |
| 6. Electrostatic Discharge Countermeasures and Gate Protection | 5-9  |
| 7. ESD Conductive Foam                                         | 5-10 |
|                                                                |      |
| Chapter 6 Recommended Mounting Method                          | 6-1  |
| 1. Instruction of Mounting the IGBT Module                     | 6-2  |
| 2. Connection of the Main Terminal                             | 6-4  |



## CONTENTS

| Chapter 7 Evaluation Board                                                                  | 7-1  |
|---------------------------------------------------------------------------------------------|------|
| 1. Abstract                                                                                 | 7-2  |
| 2. Features                                                                                 | 7-2  |
| 3. System Outline                                                                           | 7-3  |
| 4. Absolute Maximum Ratings                                                                 | 7-4  |
| 5. Electrical Characteristics                                                               | 7-4  |
| 6. Junction Temperature Monitor Function                                                    | 7-5  |
| 7. PN Voltage Monitoring Function                                                           | 7-6  |
| 8. Short-Circuit (SC) Protection Function                                                   | 7-7  |
| 9. Timing Diagrams                                                                          | 7-8  |
| 10. Generic Sample Factory Settings                                                         | 7-9  |
| 11. Recommended Start-Up Testing                                                            | 7-9  |
| 12. Evaluation Board Appearance                                                             | 7-10 |
| 13. Interface Connector and Harness                                                         | 7-12 |
| 14. Evaluation Board Installation to the Module                                             | 7-13 |
| 15. Evaluation Board Circuit Diagram                                                        | 7-14 |
| 16. Evaluation Board Dimensions                                                             | 7-24 |
| 17. Assembly Drawing                                                                        | 7-25 |
| 18. Layout                                                                                  | 7-27 |
| 19. Parts List                                                                              | 7-33 |
|                                                                                             |      |
| Chapter 8 Sense IGBT Performance                                                            | 8-1  |
| 1. Scope                                                                                    | 8-2  |
| 2. Function                                                                                 | 8-2  |
| 3. Recommended R <sub>SE</sub> : Sense Resistor                                             | 8-3  |
| 4. Typical Characteristics of $V_{\rm SE}$                                                  | 8-4  |
| 5. $V_{\rm SE}$ Dependence of $I_{\rm C}$ and $T_{\rm vj}$ : (i) Short- Circuit / Transient | 8-4  |
| 6. $V_{\rm SE}$ Dependence of $I_{\rm C}$ and $T_{\rm vj}$ : (ii) Over-current / Transient  | 8-5  |

V<sub>SE</sub> Dependence of *I*<sub>C</sub> and *T*<sub>vj</sub> : (iii) Over-current / Steady State
 Application for SC Protection Function by Using ADI-ADuM4138

8-6

8-7



## CONTENTS

| Chapter 9 Temperature Sensing Function                                                                                                                          | 9-1                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 1. Scope                                                                                                                                                        | 9-2                          |
| 2. Function                                                                                                                                                     | 9-2                          |
| 3. Temperature Sensing Characteristics                                                                                                                          | 9-2                          |
| 4. Temperature Sensing Function when Using ADI-ADuM4138                                                                                                         | 9-3                          |
| 5. Temperature Sensing Correction Method for ADI-ADuM4138                                                                                                       | 9-3                          |
|                                                                                                                                                                 |                              |
| Chapter 10 Parallel connections                                                                                                                                 | 10-1                         |
|                                                                                                                                                                 |                              |
| 1. Current Imbalance at Steady State                                                                                                                            | 10-2                         |
| 1. Current Imbalance at Steady State         2. Current Imbalance at Switching                                                                                  | 10-2<br>10-6                 |
| 1. Current Imbalance at Steady State         2. Current Imbalance at Switching         3. Gate Drive Circuit                                                    | 10-2<br>10-6<br>10-7         |
| 1. Current Imbalance at Steady State         2. Current Imbalance at Switching         3. Gate Drive Circuit         4. Wiring Example for Parallel Connections | 10-2<br>10-6<br>10-7<br>10-8 |



# Chapter 1 Basic Concept and Features

| 1. Basic Concept of the Automotive IGBT Module     | 1-2 |
|----------------------------------------------------|-----|
| 2. Direct Liquid-cooling Structure                 | 1-3 |
| 3. Feature of X-series RC-IGBT Chips               | 1-4 |
| 4. On-chip Sensors                                 | 1-6 |
| 5. Application of High-strength Soldering Material | 1-6 |
| 6. Circuit Configuration                           | 1-7 |
| 7. Numbering System                                | 1-8 |



This chapter describes the basic concept and features of the automotive IGBT module.

### 1. Basic Concept of the Automotive IGBT Module

From the viewpoint of protecting the global environment, the reduction of Carbon dioxide  $(CO_2)$  emissions has recently been required in the world. In the automotive field, use of hybrid electric vehicles (HEV) and electric vehicles (HV) has been increasing to reduce  $CO_2$  emissions. HEV and EV drive a running motor. A driving motor in HEV and EV is driven by converting DC power stored in a high-voltage battery into AC power using a power conversion system. IGBT modules are mainly used for such power conversion system. The IGBT module used for the power conversion system is required to be compact since a high-voltage battery, power conversion system, motor, etc. must be installed within a limited space.

In view of such circumstances, Fuji's automotive IGBT module has been developed based on the concept of "downsizing."

Fig. 1-1 shows the basic needs in the market for IGBT modules, which include the improvement in performance and reliability and reduction in environmental impact. Since characteristics determining performance, reliability, and environmental load are related to one another, it is essential to improve them in good balance to downsize the IGBT module.

The newly developed automotive IGBT module achieves the basic concept "downsizing" by adopting (i) 3rd-generation direct liquid-cooling structure with water jacket, (ii) 7th-generation X-series RC-IGBT<sup>\*1</sup> chip, and (iii) high-strength soldering material, thus optimizing the performance, reliability and environmental impact. And two on-chip sensors, which are current sensor and temperature sensor, can support high reliability. Additionally, the P-voltage monitor terminal can assist the fine control of the power control system according to the battery voltage.



\*1) RC-IGBT: Reverse Conducting Insulated Gate Bipolar Transistor

Fig. 1-1 IGBT module development concept targeted by Fuji Electric



## 2. Direct Liquid-cooling Structure

The newly developed automotive IGBT module has achieved the decreasing of thermal resistance significantly by adopting 3rd. generation direct water-cooling structure. Although 1st. generation direct cooling system could be achieved 33% of thermal resistance improvement comparing to indirect cooling system, 3rd. generation system can be improved more 30% gain in thermal resistance by integrated base fins and water jacket. This concept can present not only better thermal resistance performance but also water flow design free. And applying flange type water flow connection, it is able to easily design to integrate motor and control module.

Fig. 1-2 shows the appearance of the newly developed automotive IGBT module developed this time. Fig. 1-3 is a comparison of steady-state thermal resistance between the 1st. generation and the 3rd. generation. On 3rd. generation cooling system, a cooling design without clearance increases coolant flow speed between fins, as a result 30% of the thermal resistance is improved.



(a)Top face

Fig. 1-2 Appearance of 6MBI800XV-075V-01



Fig. 1-3 Thermal resistance comparison



## 3. Feature of X-series RC-IGBT Chips

The newly developed model of automotive IGBT module (6MBI800XV-075V) is using 750 V "X-series" RC-IGBTs . The X-series RC-IGBT has decreased on-state voltage and switching loss by optimizing field-stop (FS) structure. Furthermore, switching-speed controllability has also been improved by optimizing trench gate structure.

As shown in below schematic, RC-IGBT has IGBT part and FWD part in the same die like stripe shape.



Fig. 1-4 Basic concept of the RC-IGBT

Advantage of the RC-IGBT is better  $V_{CE(sat)}$ - $E_{off}$  performance than conventional IGBT.

As shown in below image, during the turn-off operation, the electron is easily swept because of corrector-shorted structure on the bottom side.

That is why turn-off loss is improved compare with conventional one.



Fig. 1-5 Advantage of the RC-IGBT in loss



As shown in below schematic, IGBT and FWD part are alternately located on the die. Therefore thermal resistance is better than conventional one because the loss from each part are radiated from whole die surface.

Especially, the effect is big on rotor-lock mode, step-up converter and active short circuit operation.



Fig. 1-6 Advantage of the RC-IGBT in thermal resistance

In the case of rotor-lock mode, RC-IGBT can dramatically suppress heating up because of large radiation area.

On the other hand, RC-IGBT has a little bit demerit on 3 phase operation since there is thermal interference between IGBT part and FWD part.



Fig. 1-7 Advantage of the RC-IGBT in rotor lock mode



## 4. On-chip Sensors

As shown in Fig. 1-8, a temperature sensor and a current sensor are integrated on a same IGBT chip. By current source and a shunt resistor, a  $T_{vi}$  and a current can be monitored, respectively.



Fig. 1-8 On-chip sensors

## 5. Application of High-Strength Soldering Material

Since automotive semiconductors are often used in a severe condition compared to industrial or consumer use, higher reliability is required. In particular, if a crack is generated in a solder layer between the insulated substrate and the baseplate due to mechanical stress by temperature cycles, the thermal resistance is increased then abnormal chip heating might be occurred, and it cause a failure of the IGBT module. Fuji's automotive IGBT module suppresses generation of cracks significantly by changing solder material to newly developed SnSb series solder from conventional SnAg-series solder (Fig. 1-9).





(a) SnSb-series solder

(b) SnAg-series solder

Fig. 1-9 Comparison in progress of cracks after temperature cycle test between SnSb-series solder and SnAg-series solder (Ultrasonic flow detection image after 2,000 temperature cycles)



# 6. Circuit Configuration

Table 1-1 shows the circuit configuration of the automotive IGBT modules.

| Table 1-1 Circuit configuration |                       |                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|---------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                 | Name                  | 6 in 1                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| N                               | lodel name            | 6MBI800XV-075V                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Α                               | ppearance             | U.V.W terminal<br>P-terminal<br>P-terminal<br>P-terminal                                                                                                                                                                                                                                                                                                                             |  |  |
|                                 | Equivalent<br>circuit | $\begin{array}{  c                                  $                                                                                                                                                                                                                                                                                                                                |  |  |
|                                 | Features              | One arm is constituted by one pair of RC-IGBT.<br>Each arm at the outlet side of the cooling water has two on chip sensor.<br>One is temperature sensing diode, and the other is current sensing IGBT.                                                                                                                                                                               |  |  |
|                                 | Temp.<br>sensor       | Temperature diode specification is shown in the specification sheet.<br>Typical performance between $V_{\rm F}$ and $T_{\rm vj}$ is shown in Fig. 7-3(a) of chapter 7.                                                                                                                                                                                                               |  |  |
| nction                          | Sense<br>IGBT         | Sense IGBT specification is described in the specification sheet.<br>And its typical characteristics and the usage examples are explained in the chapter 8.                                                                                                                                                                                                                          |  |  |
| Funct                           | P-terminal            | P-terminal can monitor the positive voltage of $V_{dc}$ value. Negative voltage shall be taken<br>from the terminal number 22, which is the emitter terminal of the lower arm of the phase W.<br>This terminal voltage is same as voltage of P terminal so please take care of electric shock.<br>An example of the P terminal voltage monitoring is shown in Fig. 7-5 of chapter 7. |  |  |

Table 1-1 Circuit configuration



## 7. Numbering System

The numbering system of the automotive IGBT module for 6MBI800XV-075V-01 is shown in Fig. 1-10 below as an example.

| $\frac{6}{(1)} \frac{MB}{(2)} \frac{1}{(3)} \frac{80}{(4)}$ | $\frac{10}{10}$ $\frac{X}{(5)}$ $\frac{V}{(6)}$ - $\frac{07}{(7)}$ | $\frac{75}{10} \frac{V}{(8)} - \frac{01}{(9)}$ |
|-------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|
|                                                             | Symbol                                                             | Description                                    |
| (1) Number of switch elements                               | 6                                                                  | 6 arms                                         |
| (2) Model group                                             | MB                                                                 | IGBT model                                     |
| (3) Insulation type                                         | I                                                                  | Insulated type                                 |
| (4) Maximum current                                         | 800                                                                | 800 A                                          |
| (5) Chip generation                                         | Х                                                                  | X series                                       |
| (6) In-house identification No.                             | V                                                                  | Identification No.                             |
| (7) Element rating                                          | 075                                                                | Withstand voltage: 750 V                       |
| (8) Automotive product                                      | V                                                                  | Automotive product                             |
| (9) In-house identification No.                             | 01                                                                 | Identification No.                             |

Fig. 1-10 Numbering system



# Chapter 2 Terms and Characteristics

| 1. Description of Terms                              | 2-2 |
|------------------------------------------------------|-----|
| 2. Cooling Performance of the Automotive IGBT Module | 2-5 |

2-1



This chapter describes the terms related to the automotive IGBT module and its characteristics.

# 1. Description of Terms

Various terms used in the specification, etc. are described below.

Table 2-1 Maximum ratings

| Term                           | Symbol                                | Definition explanation (See specifications for test conditions)                                                                               |
|--------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Collector-emitter voltage      | V <sub>CES</sub>                      | Maximum collector-emitter voltage with gate-emitter shorted                                                                                   |
| Gate-emitter voltage           | V <sub>GES</sub>                      | Maximum gate-emitter voltage with collector-emitter shorted                                                                                   |
| Implemented collector current  | I <sub>CN</sub>                       | Ratings current                                                                                                                               |
| Collector current              | I <sub>Cnom</sub><br>I <sub>C</sub>   | Maximum forward DC collector current                                                                                                          |
| Conector current               | -I <sub>Cnom</sub><br>-I <sub>C</sub> | Maximum reverse DC collector current                                                                                                          |
| Collector power dissipation    | P <sub>C</sub>                        | Maximum power dissipation per element                                                                                                         |
| Junction temperature           | T <sub>vj</sub>                       | Maximum chip temperature, at which normal operation is possible.<br>You must not exceed this temperature in the worst condition.              |
| Operating junction temperature | $T_{ m vjop}$                         | Maximum chip temperature during continuous operation                                                                                          |
| Cooling water temperature      | T <sub>win</sub>                      | Cooling water temperature on the inlet side of the cooling water channel                                                                      |
| Storage temperature            | T <sub>stg</sub>                      | Temperature range for storage or transportation, when there is no electrical load on the terminals                                            |
| Isolation voltage              | V <sub>iso</sub>                      | Maximum effective value of the sine-wave voltage between<br>the terminals and the heat sink, when all terminals are<br>shorted simultaneously |
|                                | Mounting                              | Maximum torque for specified screws when mounting the IGBT on customer's system                                                               |
| Screw torque                   | Main<br>Terminal                      | Maximum torque for terminal screws when connecting external wires/bus bars to the main terminals                                              |
|                                | PCB<br>Mounting                       | Maximum torque for tightening screws when PCB install on the IGBT module                                                                      |
| Control terminal soldering     | Number of times                       | Maximum number of times                                                                                                                       |
|                                | Soldering temperature                 | Maximum soldering temperature                                                                                                                 |
|                                | Soldering time                        | Maximum soldering time                                                                                                                        |

Caution: The maximum ratings must not be exceeded under any circumstances.



### Table 2-2 Electrical characteristics

| Term Symbol         |                                        | Symbol                | Definition explanation (See specifications for test conditions)                                                                                                                             |
|---------------------|----------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cteristics          | Zero gate voltage collector<br>current | I <sub>CES</sub>      | Collector leakage current when a specific voltage is applied between the collector and emitter with gate-emitter shorted                                                                    |
|                     | Gate-emitter leakage current           | I <sub>GES</sub>      | Gate leakage current when a specific voltage is applied between the gate and emitter with collector-emitter shorted                                                                         |
|                     | Gate-emitter threshold voltage         | $V_{\rm GE(th)}$      | Gate-emitter voltage at a specified collector current and collector-emitter voltage (gate-emitter voltage which start to flow a low collector current)                                      |
|                     | Collector-emitter saturation voltage   | V <sub>CE(sat)</sub>  | Collector-emitter voltage at a specified collector current and gate-emitter voltage (Usually $V_{GE}$ =15V)                                                                                 |
| atic chara          | Input capacitance                      | C <sub>ies</sub>      | Gate-emitter capacitance, when a specified voltage is applied<br>between the gate and emitter as well as between the collector<br>and emitter, with the collector and emitter shorted in AC |
| St                  | Output capacitance                     | C <sub>oes</sub>      | Gate-emitter capacitance, when a specified voltage is applied<br>between the gate and emitter as well as between the collector<br>and emitter, with gate-emitter shorted in AC              |
|                     | Reverse transfer capacitance           | C <sub>res</sub>      | Collector-gate capacitance, when a specified voltage is applied between the gate and emitter, while the emitter is grounded                                                                 |
|                     | Diode forward on voltage               | V <sub>F</sub>        | Forward voltage when the specified forward current is applied to the internal diode                                                                                                         |
|                     | Turn-on time                           | t <sub>d(on)</sub>    | The time interval between when the gate-emitter voltage rises to 10% of the maximum value and when the collector current rises to 10% of the maximum value during IGBT turn on              |
| ristics             | Rise time                              | t <sub>r</sub>        | Time required for collector current to rise from 10% to 90% of the maximum value                                                                                                            |
| characte            | Turn-off time                          | $t_{ m d(off)}$       | The time interval between when the gate-emitter voltage drops to 90% of the maximum value and when the collector current drops to 90% of the maximum value during IGBT turn off             |
| namic               | Fall time                              | <i>t</i> <sub>f</sub> | Time required for collector current to drop from 90% to 10% of the maximum value                                                                                                            |
| Dyr                 | Reverse recovery time                  | t <sub>rr</sub>       | Time required for reverse recovery current in the internal diode to decay                                                                                                                   |
|                     | Reverse recovery current               | I <sub>rrm</sub>      | Peak reverse current during reverse recovery                                                                                                                                                |
| Re <sup>r</sup> are | verse bias safe operating<br>a         | RBSOA                 | Current and voltage area when IGBT can be turned off under specified conditions                                                                                                             |
| Ga                  | te resistance                          | R <sub>G</sub>        | Series gate resistance (See switching time test conditions for standard values)                                                                                                             |

### Table 2-3 Electrical characteristics (cont'd)

| Term                                       | Symbol          | Definition explanation (See specifications for test conditions)                                                    |
|--------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------|
| Gate charge capacity                       | Q <sub>g</sub>  | Turn on gate charge between gate and emitter                                                                       |
| Flastra Otatia Diasharra                   | HBM             | Static electricity tolerance on human body model                                                                   |
| Electro Static Discharge                   | MM              | Static electricity tolerance on machine model                                                                      |
| Sense emitter voltage                      | V <sub>SE</sub> | Sense emitter voltage between specified shunt resistance under ratings collector current by specified $V_{\rm GE}$ |
| Temperature sense diode forward on voltage | V <sub>AK</sub> | Temperature sense diode forward voltage between Anode and Kathode                                                  |

|  | Table 2-4 | Thermal | resistance | characteristics |
|--|-----------|---------|------------|-----------------|
|--|-----------|---------|------------|-----------------|

| Term               | Symbol                 | Definition explanation (See specifications for test conditions) |
|--------------------|------------------------|-----------------------------------------------------------------|
| Thermal resistance | R <sub>th(j-win)</sub> | Thermal resistance between the junction and cooling water       |



## 2. Cooling Performance of the Automotive IGBT Module

### 2.1 Cooler (liquid-cooling jacket)

The automotive IGBT module has a direct liquid-cooling structure which has a aluminum base and fins with aluminum water jacket. The cooling efficiency is enhanced by eliminating clearance at the bottom of the cooler in 1st. generation cooling system. Although the 1st. generation direct cooling structure requires a cooler (liquid-cooling jacket) which has a flow path of coolant, it is not necessary to design the liquid-cooling jacket because of integrated both of base fin and water jacket in 3rd. generation cooling system any more.

#### 2.2 Transient thermal resistance characteristics

Fig. 2-1 shows the transient thermal resistance characteristics which is used to calculate temperature increase. (This characteristics curve represents the value of one element of IGBT)

The thermal resistance characteristics are often used for thermal analysis, and defined by a formula similar to the one representing the Ohm's law for electrical resistance.

Temperature difference  $\Delta T$  [°C] = Thermal resistance  $R_{\text{th}}$  [°C/W] × Energy (loss) [W]

The thermal resistance is used for calculation of  $T_{vj}$  of IGBT and FWD in the automotive IGBT module. (See Chapter 3 Heat dissipation design method for details.)



Fig. 2-1 Transient thermal resistance (max.)

### 2.3 Cooling performance dependence of cooling liquid temperature

The temperature of the cooling liquid (coolant) which is used to cool the automotive IGBT module affect the thermal resistance. Further, the higher the cooling water temperature, the lower the pressure loss, but higher the junction temperature. Due attention should therefore be paid to the above when designing the module.

### 2.4 Cooling performance and pressure loss

dependence of flow rate of cooling liquid As well as the cooling liquid temperature, the flow rate of the cooling liquid also affects the cooling performance. The cooling performance increases with an increase of flow rate, but the pressure loss between the inlet and outlet of the flow path also increases. If the pressure loss increases, the variation of chip temperature in the module becomes wide. Therefore it is necessary to optimize the performance of the pump in the system and flow path design.

As a typical example, Fig. 2-2 shows the pressure loss and thermal resistance on the flow rate of coolant. Refer to this figure when designing a module.







# Chapter 3 Heat Dissipation Design Method

| 1. Power Dissipation Loss Calculation    | 3-2  |
|------------------------------------------|------|
| 2. Usage of the Cooler with Water Jacket | 3-7  |
| 3. Flange Adapter Kit                    | 3-10 |



This chapter describes heat dissipation design.

To operate the IGBT safely, it is necessary not to allow the junction temperature ( $T_{vj}$ ) to exceed  $T_{vjmax}$ . Perform thermal design with sufficient allowance in order not for  $T_{vjmax}$  to be exceeded not only in the operation under the rated load but also in abnormal situations such as overload operation.

### 1. Power Dissipation Loss Calculation

In this section, the simplified method of calculating power dissipation for IGBT modules is explained.

#### 1.1 Types of power loss

The IGBT module consists of several IGBT dies and FWD dies. The sum of the power losses from these dies equals the total power loss for the module. Power loss can be classified as either on-state loss or switching loss. A diagram of the power loss factors is shown as follows.



The on-state power loss from the IGBT and FWD part can be calculated using the output characteristics, and the switching losses can be calculated from the switching loss vs. collector current characteristics on the datasheet. Use these power loss calculations in order to design a suitable cooling system to keep the junction temperature  $T_{vj}$  below the maximum rated value.

The on-state voltage and switching loss values at higher junction temperature ( $T_{vj} = 175^{\circ}$ C) is recommended for the calculation.

Please refer to the module specification sheet for these characteristics data.

3-2





### 1.2 Power dissipation loss calculation for sinusoidal VVVF inverter application

Fig. 3-1 PWM inverter output current

In case of a VVVF inverter with PWM control, the output current and the operation pattern are kept changing as shown in Fig. 3-1. Therefore, it is helpful to use a computer calculation for detailed power loss calculation. However, since a computer simulation is very complicated, a simplified loss calculation method using approximate equations is explained in this section.

### Prerequisites

For approximate power loss calculations, the following prerequisites are necessary:

- Three-phase PWM-control VVVF inverter for with ideal sinusoidal current output
- PWM control based on the comparison of sinusoidal wave and saw tooth waves

### On-state power loss calculation ( $P_{sat}$ , $P_{F}$ )

As displayed in Fig. 3-2, the output characteristics of the IGBT and FWD have been approximated based on the data contained in the module specification sheets.



On-state power loss in IGBT chip ( $P_{sat}$ ) and FWD chip ( $P_{F}$ ) can be calculated by following equations:

$$(P_{sat}) = DT \int_0^x I_C V_{CE(sat)} d\theta$$
$$= \frac{1}{2} DT \left[ \frac{2\sqrt{2}}{\pi} I_M V_O + I_{M^2} R \right]$$
$$(P_F) = \frac{1}{2} DF \left[ \frac{2\sqrt{2}}{\pi} I_M V_O + I_{M^2} R \right]$$



Fig. 3-2 Approximate output characteristic

DT, DF: Average on-state ratio of the IGBT and FWD at a half-cycle of the output current. (Refer to Fig. 3-3)



Fig. 3-3 Relationship between power factor sine-wave PWM inverter and conductivity



The switching loss- $I_{\rm C}$  characteristics are as shown in Fig. 3-4, but are generally approximated by the following equation.

$$E_{on} = E_{on'} (I_C / ratedI_C)^a$$
$$E_{off} = E_{off'} (I_C / ratedI_C)^b$$
$$E_{rr} = E_{rr'} (I_C / ratedI_C)^c$$

a, b, c: Multiplier  $E_{on}$ ',  $E_{off}$ ',  $E_{rr}$ ':  $E_{on}$ ,  $E_{off}$  and  $E_{rr}$  at rated  $I_{C}$ 

The switching losses can be represented as follows:



Fig. 3-4 Approximate switching losses

• Turn-on loss ( $P_{on}$ )

$$\begin{split} P_{on} &= fo \sum_{K=1}^{n} (E_{on}) k \qquad \left( n : Half - cycle \, switching \, count = \frac{fc}{2fo} \right) \\ &= fo E_{on}' \frac{1}{rated \, I_{C^a}} \sum_{k=1}^{n} (I_{C^a}) k \\ &= fo E_{on}' \frac{n}{rated \, I_{C^a}} \times \pi \int_{0}^{\pi} \sqrt{2} I_{M^a} \sin \theta d\theta \\ &= fo E_{on}' \frac{1}{rated \, I_{C^a}} \, nI_{M^a} \\ &= \frac{1}{2} \, fc E_{on}' \left[ \frac{I_M}{rated \, I_C} \right]^a \end{split}$$

 $E_{on}(I_M)$ :  $I_C = E_{on}$  at  $I_M$ 



• Turn-off loss (Poff)

$$P_{off} = \frac{1}{2} fc E_{off} (I_M)$$
$$E_{off} (I_M): I_C = E_{off} \text{ at } I_M$$

• FWD reverse recovery loss (P<sub>rr</sub>)

$$P_{rr} \approx \frac{1}{2} fc E_{rr} (I_M)$$
$$E_{rr} (I_M): I_C = E_{rr} \text{ at } I_M$$

Total power loss Using the results obtained in section 1.2.

IGBT chip power loss:  $P_{Tr} = P_{sat} + P_{on} + P_{off}$ FWD chip power loss:  $P_{FWD} = P_F + P_{rr}$ 

The DC supply voltage, gate resistance, and other circuit parameters will differ from the standard values listed in the module specification sheets.

Nevertheless, by applying the instructions of this section, the actual values can easily be calculated.



### 2. Usage of the Cooler with Water Jacket

Usage of cooling system of this IGBT module is very easy, because a water jacket is already integrated to cooling fin base. So user do not need to design any water jacket comparing to conventional open pin fin type IGBT module.

#### 2.1 Thermal equation in steady state

Thermal conduction of IGBT module can be represented by an electrical circuit. In this section, in the case only one IGBT module mounted to a heat sink is considered. This case can be represented by an equivalent circuit as shown in Fig. 3-5 thermally.

From the equivalent circuit shown in Fig. 3-5, the junction temperature  $(T_{vj})$  can be calculated using the following thermal equation:

$$T_{vj} = W \times \left\{ R_{th(j-win)} \right\} + T_{win}$$

Where, the inlet coolant temperature  $T_{win}$  is represents the temperature at the position shown in Fig. 3-6. As shown in Fig. 3-6, the temperature at points other than the relevant point is measured low in actual state, and it depends on the heat dissipation performance of the water jacket. Please be designed to be aware of these.



Fig. 3-5 Equivalent circuit of the thermal resistance



Fig. 3-6 An inlet and an outlet of the cooling system and the coolant flow direction



### 2.2 Thermal equations for transient power loss calculations

Generally, it is enough to calculate  $T_{vj}$  in steady state from the average loss calculated as described previous section. In actual situations, however, actual operation has temperature ripples as shown in Fig. 3-7 because repetitive switching produce pulse wave power dissipation and heat generation. In this case, considering the generated loss as a continuous rectangular-wave pulse having a certain cycle and a peak value, the temperature ripple peak value ( $T_{jp}$ ) can be calculated approximately using a transit thermal resistance curve shown in the specification (Fig. 3-8).

$$T_{jp} - T_{win} = P \times \left[ R(\infty) \times \frac{t_1}{t_2} + \left( 1 - \frac{t_1}{t_2} \right) \times R(t_1 + t_2) - R(t_2) + R(t_1) \right]$$



Fig. 3-7 Temperature ripple



#### Fig. 3-8 Transit thermal resistance curve



### 2.3 Flow path and pressure loss

As shown in Fig. 3-6, the direction of cooling water is already designed from inlet to outlet. The pressure loss is almost same, even if the water flow direction were exchanged respectively. However, the water flow direction shall not be exchanged for safety operation, because the location of the junction temperature sensor diode is already fixed to the outlet side of the designed water flow direction.

### 2.4 Selection of cooling liquid

A mixed liquid of water and ethylene glycol shall be used as a coolant for the direct liquid-cooling system. As cooling liquid, 50% of long life coolant (LLC) aqueous solution is strongly recommended. Impurities contained in the coolant cause a clogging of flow path, and increasing pressure loss and decreasing cooling performance. So eliminating impurities shall be required to avoid performance degradation of the module. In addition, if water which corrosion inhibitor is not including is used, corrosion of aluminum oxide may be produced. To prevent the corrosion of fin base of the IGBT module, it is recommended to monitor the pH buffer solution and the corrosion inhibitor in the coolant periodically to keep these concentrations over the value which recommended by the LLC manufacturer. Replenish or replace the pH buffer agent and the corrosion inhibitor before their concentration decreases to the recommended reference value or lower.

IGBT module operation without coolant shall strictly forbid.

And any particle in the coolant which clog cooling system also shall be eliminated out by a filter.

### 2.5 Selection of O-ring

When this IGBT is installed to a power control system, certain suitable O-ring is needed. Size and material of O-ring depend on the system design and the operational environment of the system. Therefore, when O-ring is selected, sufficient confirmation about seal performance shall be needed.

There is an example of O-ring in Table 3-1 as the flange adapter kit for IGBT module evaluation. Sealing area of the flange for the flange adapter kit is shown in Fig. 3-9.

### 2.6 Temperature check

After selecting a O-ring and determining the mounting position of the IGBT module, the temperature of each part should be measured to make sure that the junction temperature ( $T_{vj}$ ) of the IGBT module does not exceed the rating or the designed value.

3 - 9



## 3. Flange Adapter Kit

Flange Adapter Kit is prepared as an optional part.

The kit is including a sealing block with O-rings and nipples to connect the cooler to the water line. \*1) This kit was developed only for evaluation purpose of our IGBT module and it is not a regular product.



Fig. 3-9 Sealing area of the flange



Fig. 3-10 Flange adapter kit : flange adapter base and nipple

© Fuji Electric Co., Ltd. All rights reserved.



Reference information of O-ring of the flange adapter kit

- Size : P15 @JIS standard
- Material : NBR(Nitrile rubber)
- Hardness : 70

#### Table 3-1 Size of O-ring (Unit : mm)

|                          | Dimension of O-ring               |      |               | Dimension of grove  |                     |                              |                       |                       |        |     |
|--------------------------|-----------------------------------|------|---------------|---------------------|---------------------|------------------------------|-----------------------|-----------------------|--------|-----|
| Nominal<br>size<br>(JIS) |                                   |      |               | d                   | D                   | G(tolerance $^{+0.25}_{0}$ ) |                       |                       | Н      | R   |
|                          | Thickness W Inner dimension<br>do |      | mension<br>do |                     |                     | No<br>Backup<br>ring         | One<br>backup<br>ring | Two<br>backup<br>ring | H±0.05 | MAX |
| P10A                     |                                   | 9.8  | ±0.20         | 10                  | 14                  |                              |                       |                       |        |     |
| P11                      |                                   | 10.8 | ±0.21         | 11                  | 15                  |                              |                       |                       |        |     |
| P11.2                    |                                   | 11.0 | ±0.21         | 11.2                | 15.2                |                              |                       |                       |        |     |
| P12                      |                                   | 11.8 |               | 12                  | 16                  |                              |                       |                       |        |     |
| P12.5                    |                                   |      | 12.3 ±0.22    | 12.5                | 16.5                |                              |                       |                       |        |     |
| P14                      |                                   | 13.8 |               | 14                  | 18                  |                              |                       |                       |        |     |
| P15                      | 2.4±0.09                          | 14.8 | ±0.24         | 15 <sub>-0.06</sub> | 19 <sup>+0.06</sup> | 3.2                          | 4.4                   | 6.0                   | 1.8    | 0.4 |
| P16                      |                                   | 15.8 |               | 16                  | 20                  |                              |                       |                       |        |     |
| P18                      |                                   | 17.8 | ±0.25         | 18                  | 22                  |                              |                       |                       |        |     |
| P20                      |                                   | 19.8 | ±0.26         | 20                  | 24                  |                              |                       |                       |        |     |
| P21                      |                                   | 20.8 | ±0.27         | 21                  | 25                  |                              |                       |                       |        |     |
| P22                      |                                   | 21.8 | ±0.28         | 22                  | 26                  |                              |                       |                       |        |     |







# Chapter 4 Troubleshooting

1. Troubleshooting

4-2



This chapter describes how to deal with troubles that may occur while the automotive IGBT module is handled.

## 1. Troubleshooting

When the IGBT module is installed in an inverter circuit, etc. a failure of the IGBT module might be occurred due to improper wiring or mounting. Once a failure is occurred, it is important to identify the root cause of the failure. Table 4-1 illustrates how to determine a failure mode as well as the original causes of the failure by observing irregularities outside of the device. First of all, estimate a failure mode of the module by using the table when a failure is happened. If the root cause cannot be identified by using Table 4-1, see Fig. 4-1 as detailed analysis chart for helping your further investigation.

#### Table 4-1(a) Estimated causes and its device failure modes

| External abnormalities  |                               | Ca                                                                                                                                             | ause                                                                                | Device failure mode                  | Further check point                                             |  |
|-------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|--|
| Short-circuit           | Arm<br>short-circuit          | After short-circuit detect SCSO                                                                                                                | ion, surge voltage excess                                                           | Outside SCSOA                        | Integrity waveform of locus and device ruggedness               |  |
|                         | Series arm<br>short-circuit   | Insufficient dead time                                                                                                                         | Large t <sub>off</sub> due to reverse<br>gate bias<br>dead time setting<br>mistakes | Overheat                             | Integrity device <i>t</i> off and dead time                     |  |
|                         |                               | dv/dt malfunction                                                                                                                              | less reverse gate bias<br>too long gate wiring                                      |                                      | Faulty turn-on due to d <i>v</i> /d <i>t</i>                    |  |
|                         |                               | Noise induced                                                                                                                                  | Gate circuit malfunction<br>Logic circuit malfunction                               | SCSOA                                | confirm circuit malfunction                                     |  |
|                         | Output<br>short-circuit       | Faulty wiring, abnormal circuit                                                                                                                | wire contact, load short-                                                           | and/or<br>overheat                   | confirm failure phenomenon                                      |  |
|                         | Ground<br>short               | Faulty wiring, abnormal                                                                                                                        | wire contact,                                                                       |                                      | Integrity between device ruggedness<br>and protection condition |  |
|                         |                               |                                                                                                                                                | Logic circuit malfunction                                                           |                                      | Logic signal                                                    |  |
| Overload                |                               | Overcurrent                                                                                                                                    | protection function<br>setting fault                                                | Overheat                             | Redesign of protection condition                                |  |
| Quanaltaga              | Excessive<br>DC voltage       | Overvoltage larger than<br>device breakdown<br>voltage apply between<br>Corrector and Emitter                                                  | Excessive input voltage<br>Overvoltage protection                                   | Excess ratings of $V_{CE}$           | Redesign of protection condition                                |  |
|                         | Excessive<br>spike<br>voltage | Destruction due to exce<br>larger than RBSOA                                                                                                   | essive surge voltage                                                                | RBSOA                                | Integrity confirmation RBSOA and operating locus at turn-off    |  |
|                         |                               | at turn-off                                                                                                                                    |                                                                                     |                                      | Redesign of sunbber circuit                                     |  |
|                         |                               | Destruction due to exce<br>larger than device                                                                                                  | essive surge voltage                                                                |                                      | Integrity spike voltage and device<br>breakdown voltage         |  |
| e . e . e . e . e . g e |                               | breakdown voltage at re                                                                                                                        | everse recovery                                                                     |                                      | sunbber circuit                                                 |  |
|                         |                               | spike<br>voltage Reverse recovery<br>phenomenon at                                                                                             | logic circuit or gate<br>circuit malfunction due to<br>noise                        | Overvoltage of V <sub>CES</sub>      | Logic circuit and/or gate circuit                               |  |
|                         |                               | operating with very<br>narrow gate pulse<br>*1)                                                                                                | Electomagnetic induction<br>noise from main circuit to<br>gate wiring               |                                      | Mutual interference between gate<br>circuit and main circuit    |  |
|                         |                               | Destruction by the main circuit wiring is too long,<br>the surge voltage at the time of the turn-off to<br>reach the dynamic avalanche voltage |                                                                                     | Destruction due to dynamic avalanche | Redesign of main circuit inductance                             |  |

\*1) Excessive reverse recovery voltage over device breakdown voltage is produced, if gate pulse width is less than few hundred nano second.



| External abnormalities                             |                    | Cause                                                                |                                                 | Device failure mode                          | Further checkpoints                            |
|----------------------------------------------------|--------------------|----------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------------|
| Driver supply voltage<br>drop                      |                    | $V_{\rm CE}$ is increased by $V_{\rm GE}$ lower                      | DC/DC converter<br>malfunction                  |                                              | Check circuit design                           |
|                                                    |                    | than specified value. As a result, power consumption and Joule       | Too mach time constant of power supply settling | Overheat                                     |                                                |
|                                                    |                    | fiedu die incleaseu.                                                 | Gate wiring break                               |                                              |                                                |
| Excessive gate voltage                             |                    | Electro static discharge on $V_{\rm GE}$                             |                                                 | Excessive Vors                               | Assembly earea<br>environment against ESD      |
|                                                    |                    | Spike voltage larger than $V_{\text{GES}}$ is wiring                 | produced by too long gate                       |                                              | Gate voltage                                   |
| Operation under opened gate circuit                |                    | Voltage apply to Corrector and Er opened.                            | nitter while gate is                            | Overheat                                     | Gate voltage                                   |
| Overvoltege on<br>temperature diode, sense<br>IGBT |                    | Temperature diode and/or sense ESD                                   | IGBT destruction due to                         | ESD                                          | Assembly earea<br>environment against ESD      |
| Overheat                                           | Lack of heat       | Anomalous heating due to lack of                                     | Less flow rate                                  |                                              | Radiation condition or radiation design        |
|                                                    | capacity           | heat dissipation capacity                                            | Radiator malfunction                            | Overheat                                     |                                                |
|                                                    | Thermal<br>runaway | Total dissipation is increased by c due to logic circuit malfunction | arrier frequency increased                      |                                              | Logic circuit on gate                          |
| Stress                                             | Stress             | Soldered portion is broken by                                        | Stress from external<br>wiring                  | Disconnection of                             | Mechanical stress due to<br>mounting condition |
|                                                    | Vibration          | stress fatigue                                                       | Stress induced vibration                        | circuit                                      |                                                |
| Reliability<br>(Life time)                         |                    | The application condition exceeds module                             | the reliability of the                          | Destruction is<br>different in each<br>case. | Refer to Fig. 4-1(a-f)                         |

### Table 4-1(b) causes of device failure modes





Fig. 4-1(a) IGBT module failure analysis



Fig. 4-1(b) Mode A: Outside RBSOA





Fig. 4-1(c) Mode B: Gate overvoltage



Fig. 4-1(d) Mode C: Junction over heating



Fig. 4-1(e) Mode D: FWD destruction


|             |                                                                      |              |                                                                     |          | [Origne of failure]                                                         |
|-------------|----------------------------------------------------------------------|--------------|---------------------------------------------------------------------|----------|-----------------------------------------------------------------------------|
| Destruction | External force or load                                               | Щ            | Loading during product storage                                      | —        | Loading conditions                                                          |
| due to      |                                                                      | _            | Stress produced in the                                              |          | Stress in the terminal sect                                                 |
| nandling    |                                                                      |              | terminals when mounted                                              | 1        |                                                                             |
|             |                                                                      |              | Excessively long screws<br>used in the main and<br>control terminal |          | - Screw length                                                              |
|             | Excessive tightening                                                 | $\mathbb{H}$ |                                                                     |          | - Clamped section                                                           |
|             | torque                                                               |              |                                                                     |          | - Terminal section                                                          |
|             | Insufficient tightening<br>torque for main<br>terminal screws        |              | Increase contact resistance                                         |          | - Main terminal section                                                     |
|             | - Vibration                                                          | $\mathbb{H}$ | Excessive vibration during<br>transport                             |          | - Transport conditions                                                      |
|             |                                                                      |              | Loose component clamping                                            | İ        | Droduct torminal a action                                                   |
|             |                                                                      |              | during product mounting                                             |          | - Floudet terminal section                                                  |
|             | Impact                                                               | Н            | Dropping, collision during<br>transport                             | <u> </u> | - Transport conditions                                                      |
|             | Soldered terminal                                                    | i i          | Overheating at terminal                                             | Ì        | Assembly condition at th                                                    |
|             | heat resistance                                                      | Π            | soldering                                                           | Γ        | installation                                                                |
|             | Storage in abnormal                                                  | Ш            | Storage in corrosive                                                | L        | - Storage condition                                                         |
|             | conditions                                                           | JП           | gas environment                                                     | ļſ       | Clorage condition                                                           |
|             |                                                                      | _            | Storage in<br>condens ationfrendly<br>environment                   |          |                                                                             |
|             |                                                                      | Ц            | Storage in dusty                                                    | μ        |                                                                             |
|             | Electric static                                                      | 1<br>1       |                                                                     | l        | ESD control condition at th                                                 |
|             | discharge                                                            |              | environment                                                         | -        | installation                                                                |
|             | Cooling water                                                        | Н            | Abnormal at the flange seal                                         | <br>     | - Product handling                                                          |
|             | leakage                                                              |              | Abnormal at the cover of the cooler                                 |          | Product handling<br>Excessive water pressure<br>Excessive vibration and sho |
|             |                                                                      | _            | Abnormal mounting conditions                                        |          | Insufficient torque<br>- Broken screw<br>Unsuitable sealing design          |
|             |                                                                      |              | Corrosion                                                           |          | Unsuitable coolant<br>Excessive flow rate<br>Air bubble in the coolant      |
| Reliability | Soaking in high                                                      | Н            | Long term storage in high                                           | ╟╴       | - Storage conditions                                                        |
| destruction | Soaking in low                                                       | i i          | Long term storage in low                                            | i I      |                                                                             |
|             | temperature                                                          |              | temperature                                                         | П        |                                                                             |
|             | Soaking in high<br>temperature and high<br>humidity                  | μ            | Long term storage in high temperature and high humidity             | Ц        |                                                                             |
|             | Thermal stress                                                       | fat          | igue in temperature cycle                                           | ┝        | Matching between product                                                    |
|             | -Thermal impact by shar                                              | rp r         | ise or fall in product temperature                                  | H        | time and operation condition                                                |
|             |                                                                      | T            | power cycle                                                         | μ        |                                                                             |
|             | Long term bias on G-E<br>or C-E under high<br>temperature conditions |              | Long term usage on high<br>temperature                              |          |                                                                             |
|             | Voltage applied for<br>long term under hot                           | Ц            | Long term usage on high                                             | Ľ        |                                                                             |

Fig. 4-1(f) Mode E: FWD destruction



# Chapter 5 Precautions for Use

| 1. Maximum Junction Temperature $T_{vjmax}$                    | 5-2  |
|----------------------------------------------------------------|------|
| 2. Short-Circuit Protection                                    | 5-2  |
| 3. Over Voltage Protection and Safety Operation Area           | 5-2  |
| 4. Operation Condition and Dead Time Setting                   | 5-7  |
| 5. Parallel Connections                                        | 5-8  |
| 6. Electrostatic Discharge Countermeasures and Gate Protection | 5-9  |
| 7. ESD Conductive Foam                                         | 5-10 |



This chapter describes precautions for actual operation of the IGBT module.

## 1. Maximum Junction Temperature $T_{vimax}$

As described in specification sheet, this automotive IGBT module can be used under  $T_{vj}$ =175°C. However, if junction temperature under operation were excessed over the maximum ratings, the products life time degradation might be happened by expediting thermal fatigue destruction. Therefore, to keep safety operation, please use the product under suitable operating conditions.

### 2. Short-Circuit Protection

When IGBT is to be short-circuit state, Collector current is increased and  $V_{CE}$  voltage is rapidly increased. From this characteristics, although Collector current is limited certain level under short-circuit state, high power due to high voltage and high current is apply to the IGBT at this moment. Therefore, this severe state should be removed as soon as possible.

An example by using gate driver IC which has short-circuit protection function is shown in chapter 7, please refer it.

As it is explained in chapter 1, this IGBT module has on-chip current detecting sensor. Its function and characteristics are shown in chapter 8.

So please use this on-chip sensor for short-circuit protection function suitably.

On the other, because this IGBT module does not have corrector voltage detecting point on each arm, desaturation type of short-circuit protection method shall not be used to avoid any unexpected trouble.

### 3. Overvoltage Protection and Safety Operation Area

### 3.1 Overvoltage protection

Because switching speed of IGBT is very fast, large d*i*/d*t* is produced in turn-off operation or reverse recovery. So from this large d*i*/d*t* and inductance component contained inside and outside this module surge voltage is produced. If this surge voltage is excessed the device breakdown voltage, the device is in overvoltage state and it would be destructed in the worst case. Followings are some examples to avoid this kind of worst case:

1) Add snubber circuit 2) Tune the gate resistance 3) Reduce inductance in the main circuit Images of turn-off waveform and reverse recovery waveform are shown in Fig. 5-1 and surge voltage is defined.



Fig. 5-1 Turn-off waveform, reverse recovery waveform and surge voltage

© Fuji Electric Co., Ltd. All rights reserved.



Some examples of actual surge voltage by using 6MBI800XV-075V are explained below. Fig. 5-2 shows an example of surge voltage dependence of collector current. In generally, the larger collector current makes the larger surge voltage at the turn-off. On the other hand, the larger collector current is produced the smaller surge voltage on reverse recovery.

Fig. 5-3 shows an example of surge voltage of reverse recovery dependence of gate resistor. As explained above, surge voltage produced by IGBT module is not only depend on circuit inductance but also many of operating conditions like  $V_{CC}$  and circuit parameters like gate resistor.

Therefore, when IGBT module is employed to actual equipment, it is need to confirm that surge voltage on all of operating conditions is to be within RBSOA on actual system like invertor. If surge voltage is excess guaranteed RBSOA, surge voltage shall be suppressed by adding snubber circuit, by reducing stray inductance, by tuning gate resistors and so on. In addition, when surge voltage is reduced by gate resistor, it is able to be effective operating condition to independently tune the gate resistor of turn-on and turn-off, respectively.



Fig. 5-2 An example of surge voltage dependence of collector current







### 3.2 Surge voltage of turn-off dependence of gate resistor

Relating to overvoltage protection, an example of the surge voltage dependence of gate resistor is shown in Fig. 5-4.

In generally, a methodology, which the larger resistor is applied to suppress surge voltage, had been used. However, according to generation changing of IGBT chip itself, the surge voltage characteristics is also being changed. Therefore, when gate resisters is tuned, sufficient confirmation on actual system shall be needed.



Fig. 5-4 An example of surge voltage of turn-off dependence of gate resistor

### 3.3 Safety operation area (SOA) of FWD part

As same as RBSOA of IGBT, SOA of FWD part is also defined. SOA of diode is defined as acceptable area of maximum power ( $P_{max}$ ) which is the product of current and voltage during reverse recovery operation. Therefore, any system shall be designed that locus of current and voltage during reverse recovery should be within SOA.

An example of SOA of FWD part of 6MBI800XV-075V is shown in Fig. 5-5.



Fig. 5-5 An example of SOA of FWD part

### 3.4 Dynamic avalanche phenomenon

It is explained in previous section that  $V_{CE}$  is increased when turn-off operation is performed. And if  $V_{CE}$  is excessed certain voltage,  $V_{CE}$  voltage is suppressed. One of typical example of this phenomenon is shown in Fig. 5-6. This phenomenon is called Dynamic avalanche. If this dynamic avalanche is happened, spike voltage of  $V_{CE}$  is suppressed by the decreased turn-off current. The certain operating conditions which happen dynamic avalanche shall not be applied because there is possibility of IGBT destruction by turn-off loss increase and latch-up phenomenon. There are many causes of dynamic avalanche like long wiring of main circuit. To prevent this dynamic avalanche, IGBT module shall be used within RBSOA condition, at least.



Fig. 5-6 An example of dynamic avalanche waveform

5 - 5



3.5 Spike voltage suppression circuit - clamp circuit -

In general, spike voltage generated between collector to emitter can be suppressed by means of decreasing the stray inductance or installing snubber circuit. However, it may be difficult to decrease the spike voltage under the hard operating conditions. For this case, it is effective to install the active clamp circuits, which is one of the spike voltage suppressing circuits.

Fig. 5-7 shows the example of active clamp circuits.

In the circuits, Zenner diode and a diode connected with the anti-series in the Zenner diode are added. When the Vce over breakdown voltage of Zenner diode is applied, IGBT will be turned-off with the similar voltage as breakdown voltage of Zenner diode.



Fig. 5-7 Active clamp circuit

Therefore, installing the active clamp circuits can suppress the spike voltage. Moreover, avalanche current generated by breakdown of Zenner diode, charge the gate capacitance so as to turn-on the IGBT. As the result, d*i*/d*t* at turn-off become lower than that before adding the clamp circuit (Refer to Fig. 5-8). Therefore, because switching loss may be increased, apply the clamp circuit after various confirmations for design of the equipment.



Fig. 5-8 Schematic waveform for active clamp circuit



## 4. Operation Condition and Dead Time Setting

Since principal characteristics of IGBT depend on driving conditions like  $V_{GE}$  and  $R_{G}$ , certain setting according to target design is needed. Gate bias condition and dead time setting are described here.

### 4.1 Forward bias voltage : $+V_{GE}$ (on state)

Notes when  $+V_{GE}$  is designed are shown as follows.

- (1) Set + $V_{GE}$  so that is remains under the maximum rated G-E voltage,  $V_{GES} = \pm 20V$ .
- (2) It is recommended that supply voltage fluctuations are kept to within  $\pm 10\%$ .
- (3) The on-state C-E saturation voltage  $V_{CE(sat)}$  is inversely dependent on +  $V_{GE}$ , so the greater the +  $V_{GE}$  the smaller the  $V_{CE(sat)}$ .
- (4) Turn-on switching time and switching loss grow smaller as  $+V_{GE}$  rises.
- (5) At turn-on (at FWD reverse recovery), the higher the  $+V_{GE}$  the greater the likelihood of surge voltages in opposing arms.
- (6) Even while the IGBT is in the off-state, there may be malfunctions caused by the dv/dt of the FWD's reverse recovery and a pulse collector current may cause unnecessary heat generation. This phenomenon is called a dv/dt shoot through and becomes more likely to occur as + V<sub>GE</sub> rises.
- (7) The greater the + $V_{GE}$  the smaller the short circuit withstand capability.

### 4.2 Reverse bias voltage : - V<sub>GE</sub> (off state)

Notes when  $-V_{GE}$  is designed are shown as follows.

- (1) Set  $V_{GE}$  so that it remains under the maximum rated G-E voltage,  $V_{GES} = \pm 20V$ .
- (2) It is recommended that supply voltage fluctuations are kept to within  $\pm 10\%$ .
- (3) IGBT turn-off characteristics are heavily dependent on  $-V_{GE}$ , especially when the collector current is just beginning to switch off. Consequently, the greater the  $-V_{GE}$  the shorter, the switching time and the switching loss become smaller.
- (4) If the -V<sub>GE</sub> is too small, dv/dt shoot through currents may occur, so at least set it to a value greater than -5V. If the gate wiring is long, then it is especially important to pay attention to this.

### 4.3 Avoid the unexpected turn-on by recovery dv/dt

In this section, the way to avoid the unexpected IGBT turn-on by dv/dt at the FWD's reverse recovery will be described.

Fig. 5-9 shows the principle of unexpected turn-on caused by dv/dt at reverse recovery. In this figure, it is assumed that IGBT<sub>1</sub> is turned off to on and gate to emitter voltage  $V_{GE}$  of IGBT<sub>2</sub> is negative biased. In this condition, when IGBT<sub>1</sub> get turned on from off-state, FWD on its opposite arm, that is, reverse recovery of FWD<sub>2</sub> is occurred. At same time, voltage of IGBT<sub>2</sub> and FWD<sub>2</sub> with off-state is raised. This causes the dv/dt according to switching time of IGBT<sub>1</sub>. Because IGBT<sub>1</sub> and IGBT<sub>2</sub> have the mirror capacitance  $C_{GC}$ , Current is generated by dv/dt through  $C_{GC}$ . This current is expressed by  $C_{GC} \times dv/dt$ . This current is flowed through the gate resistance  $R_{G}$ , results in increasing the gate potential.



Fig. 5-9 Principle of unexpected turn-on



So,  $V_{GE}$  is generated between gate to emitter. If  $V_{GE}$  is excess the sum of reverse biased voltage and  $V_{GE(th)}$ , IGBT<sub>2</sub> is turned on. Once IGBT<sub>2</sub> is turned on, the short-circuit condition is happened, because both IGBT<sub>1</sub> and IGBT<sub>2</sub> is under turned-on state.

Based on this principle, several measures have been devised as methods for avoiding the unexpected turn-on for the IGBT. These include adding a capacitance  $C_{GE}$  component between the gate and the emitter, increasing -  $V_{GE}$ , and enlarging the gate resistance  $R_G$ . The effect of these measures varies depending on the applied gate circuit. Therefore, only apply them after sufficiently confirming your configuration. In addition, also confirm whether there is any impact on switching loss.

#### 4.4 Dead time setting

For inverter circuits and the like, it is necessary to set an on-off timing "delay" (dead time) in order to prevent short circuits. During the dead time, both the upper and lower arms are in the "off" state. Basically, the dead time (see Fig. 5-10) needs to be set longer than the IGBT switching time ( $t_{off}$  max.). For example, if  $R_{G}$  is increased, switching time also becomes longer, so it would be necessary to lengthen dead time as well. Also, it is necessary to consider other drive conditions and the temperature characteristics.

It is important to be careful with dead times that are too short, because in the event of a short circuit in the upper or lower arms, the heat generated by the short circuit current may destroy the module. Therefore, appropriate dead time should be settled by the confirmation of practical machine.





### 5. Parallel Connections

In high capacity inverters and other equipment that needs to control large currents, it may be necessary to connect IGBT modules in parallel. When connected in parallel, it is important that the circuit design allows for an equal flow of current to each of the modules. If the current is not balanced among the IGBTs, a higher current may build up in just one device and destroy it. The electrical characteristics of the module as well as the wiring design, change the balance of the current between parallel connected IGBTs. In order to help maintain current balance it may be necessary to match the  $V_{CE(sat)}$  values of all devices.

Also, when the IGBT module has the cooler with the water jacket, it is necessary to adhere strictly to specifications such as water temperature, water flow and pressure within each water jacket.

For more detailed information on parallel connections, refer to Chapter 10 of this manual.



### 6. Electrostatic Discharge Countermeasures and Gate Protection

The guaranteed value of  $V_{GE}$  for the IGBT module is generally up to  $\pm 20$  V (Check the specifications for the exact guaranteed value). When a voltage that exceeds the guaranteed value ( $V_{GES}$ ) is applied between the gate and emitter of the IGBT, the IGBT gate is susceptible to breakage. Therefore, make sure that the voltage applied between the gate and emitter does not exceed the guaranteed value. In particular, the control terminal for the IGBT gate and temperature sensing diode is extremely sensitive to static electricity. Therefore, make sure to observe the following cautions when handling the product.

- When handling the module after unpacking, first make sure to discharge any static electricity that exists on the human body or clothing with a high-resistance (about 1 MΩ) ground, and then perform the work on a grounded conductive mat.
- 2) For the IGBT module, since no electrostatic measures have been taken for the terminal after unpacking, do not directly touch terminal components (especially the control terminal), but handle the module using the package body.
- 3) When performing soldering work on the IGBT terminal, make sure to ground the tip of the soldering iron with an adequately low resistance to ensure that static electricity is not applied to the IGBT through soldering iron or solder bath leakage.

Furthermore, the IGBT is susceptible to breakdown if voltage is applied between the collector and emitter while the gate-emitter are in the open state.

The reason for this is shown in Fig. 5-11 where a change in collector potential causes the gate potential to rise due to the flow of current (i). As a result, the IGBT turns on, and collector current begins to flow, which in turn, could cause IGBT breakdown due to heat generation.

Furthermore, if the product is installed in a piece of equipment, the IGBT is susceptible to breakdown due to the above reasons when a voltage is applied to the main circuit while the gate circuit is broken or not operating normally (gate in the open state). In order to prevent this type of breakdown, it is recommended that a resistor ( $R_{GE}$ ) of about 10 k $\Omega$  be installed between the gate and emitter.



Fig. 5-11 Gate charging from electric potential of collector



## 7. ESD Conductive Foam

When unpacking the product, it is important that there be no control pin contact when handling the product after removing the conductive foam, as this could cause electrostatic discharge damage. When installing the product in a piece of equipment, it is requested that you only remove the conductive foam just before PCB mounting in order to prevent electrostatic discharge damage. (Refer to the following workflow)



Fig. 5-12 Conductive foam removal procedures



# Chapter 6 Recommended Mounting Method

| 1. Instruction of Mounting the IGBT Module | 6-2 |
|--------------------------------------------|-----|
| 2. Connection of the Main Terminal         | 6-4 |



This chapter describes the recommended method of mounting the IGBT module and the PCB. In addition, refer to "Mounting Instruction" separately for detailed mounting method and cautions on M653 package products.

## 1. Instruction of Mounting the IGBT Module

1.1 Method of fastening the module to customer's system

Fig. 6-1 shows the recommended procedure of tightening screws for mounting the IGBT module. The fastening screws should be tightened with the specified torque.

See the specification for the specified torque and screws size to be used.

### 1.2 Prohibited matters:

- Excessive tightening torque: IGBT module shall not be used anymore. Cause of cooling system destruction by deformation of the aluminum cooler and buckling of the stud.
- (2) Insufficient tightening torque: Liquid leakage from the cooling flange may occur, or the screws may be loosened during operation, cooler destruction due to vibration during operation are expected.
- (3) Applying a load onto the cover of the cooler:Cause of cooling system destruction, cooling water leakage are expected.



### Fig. 6-1 Screw sequence for IGBT module

### 1.3 Flatness of fastening part

The flatness of the fastening portion of the module is specified in the specification. In addition, the following values are recommended for the system flatness at the module area.

System flatness at the module area :  ${\leq}50 \mu m$ 

Exceeding the requirement above may lead to damage of the power module.



### 1.4 Installation direction of the IGBT module

The IGBT module shall be installed on horizontal upward direction, but not upside down. If it were inclined or upside down, air bubble would be remained in the cooler when cooling water is flowed. Air bubble might make cavitation phenomenon and it is cause of water leakage.

### 1.5 Method of mounting the PCB and cautions

(a) As screws to be used at positions (1) to (8), specified screw size and tightening torque described in the specification sheet.

The length of the screw thread for PCB can be considered by the drawings of the module in the specification sheet.

Adjust the length of the screws depending on the types of the screws used if necessary.

- (b) Fix the screws temporarily with 1/3 of the final fastening torque and in the sequence from (1) to
  - (8) in Fig. 6-2.



Fig. 6-2 Screw sequence for PCB fix

### 1.6 Electrostatic discharge protection

If excessive static electricity is applied to the control terminal, the module may be damaged. Please take countermeasures against static electricity when handling the module.

Assembly environment relating to ESD shall be within specified value shown in the specification sheet.

### 1.7 Soldering of the control terminals

Soldering of the control terminals shall be performed based on the condition which is described on the specification sheet. Otherwise, disconnect between them might be happened.



## 2. Connection of the Main Terminal

- 2.1 Connection of the main circuit
- (a) Screw size: M5
- (b) Maximum fastening torque: refer to the specification sheet.
- (c) Length of the screw: Check the depth of screw holes on the outline drawing.

Adjust the length of the screws depending on the types of screws used if necessary.

### 2.2 Clearance and creepage distance

It is necessary to keep enough clearance distance and the creepage distance (defined as (a) in Fig. 6-3) from the main terminal to secure desirable insulation voltage. The clearance distance and the creepage distance must be longer than the minimum value shown in below.

Suitable insulation distance between a bus-bar and the main terminal screw of the module shall be designed when the module is installed to a power system.

Screws for tightening a control board on the module shall be electrically isolated. And the screws shall be appropriately selected by taking account of insulation distance between the control terminals of the module and the screws.



Fig. 6-3 Creepage distance and spatial distance at the P/N terminal



# Chapter 7 Evaluation Board

| 1. Abstract                                     | 7-2  |
|-------------------------------------------------|------|
| 2. Features                                     | 7-2  |
| 3. System Outline                               | 7-3  |
| 4. Absolute Maximum Ratings                     | 7-4  |
| 5. Electrical Characteristics                   | 7-4  |
| 6. Junction Temperature Monitor Function        | 7-5  |
| 7. PN Voltage Monitoring Function               | 7-6  |
| 8. Short-Circuit (SC) Protection Function       | 7-7  |
| 9. Timing Diagrams                              | 7-8  |
| 10. Generic Sample Factory Settings             | 7-9  |
| 11. Recommended Start-Up Testing                | 7-9  |
| 12. Evaluation Board Appearance                 | 7-10 |
| 13. Interface Connector and Harness             | 7-12 |
| 14. Evaluation Board Installation to the Module | 7-13 |
| 15. Evaluation Board Circuit Diagram            | 7-14 |
| 16. Evaluation Board Dimensions                 | 7-24 |
| 17. Assembly Drawing                            | 7-25 |
| 18. Layout                                      | 7-27 |
| 19. Parts List                                  | 7-33 |



## 1. Abstract

This evaluation board are designed only for Fuji M653 IGBT module.

The board can control the module safely by monitoring two on-chip sensors, which are junction temperature sensor and emitter current sensor.

Gate driver IC ADuM4138 of Analog Devices, Inc. is used in this evaluation board.

\*1) This evaluation board was developed only for evaluation purpose of our IGBT module and it is not a regular product. In addition, the part constants described in this document are intended to assist design, and they do not fully consider variations in parts and conditions of use. In actual design, please consider these parts dispersion and use conditions carefully.

## 2. Features

- Six channel driver
- 26 pin connector
- Isolated DC/DC converters
- Interface for 5V logic levels
- Active Clamping
- High voltage DC link monitoring
- Short-circuit (SC) protect and alarm
- Over temperature protection and alarm
  - +15V/0V gate drive voltage (To be applied)



Fig. 7-1 M653 IGBT module evaluation board



# 3. System Outline

The basic topology of the driver is shown in Fig. 7-2.

Fuji sets the values for gate resistors and other key components based on our evaluation results by using M653 IGBT module.



Fig. 7-2 Basic schematic of the M653 IGBT module evaluation board

7-3



# 4. Absolute Maximum Ratings

### Table 7-1 Absolute maximum ratings

| Parameter             | Description          | Min  | Мах  | Unit |
|-----------------------|----------------------|------|------|------|
| Supply Voltage        | IG Input             | -0.3 | 25   | V    |
| Peak Gate Current     |                      | -6   | 6    | А    |
| Input Logic Levels    | To GND               | -0.3 | 5.3  | V    |
| Switching Frequency   |                      |      | 20   | kHz  |
| Isolation Voltage     | Primary to Secondary |      | 2500 | Vrms |
| Operating Temperature |                      | -40  | +105 | °C   |
| Storage Temperature   |                      | -40  | +105 | °C   |

\* measured under ambient temperature 25°C. unless otherwise specified.

# 5. Electrical Characteristics

### Table 7-2 Electrical characteristics

| Power Supply                | Description                                   | Min | Тур  | Max | Unit |
|-----------------------------|-----------------------------------------------|-----|------|-----|------|
| Supply Voltage              | IG input                                      | 6   | 12   | 16  | V    |
| Supply Current              | Without Load                                  |     | 200  |     | mA   |
| Rush Current                | Start up Current                              |     | 16   |     | А    |
| Average Supply Current      | Switching Frequency: 10KHz                    |     | 600  |     | mA   |
| UVLO Level (Primary Side)   | Primary Side low voltage detect fault level   |     | 4.3  |     | V    |
| UVLO Level (Secondary Side) | Secondary Side low voltage detect fault level |     | 11.2 |     | V    |
| Secondary Output Voltage    | Fly-Back Output Voltage                       | 14  | 15   | 16  | V    |

| Logic Signal             | Description            | Min  | Тур  | Max  | Unit |
|--------------------------|------------------------|------|------|------|------|
| Input Current            |                        |      | 1.0  |      | mA   |
| V5 Regulated Voltage     |                        | 4.85 | 5.00 | 5.15 | V    |
| Logic High Input Voltage |                        | 2.0  |      |      | V    |
| Logic Low Input Voltage  |                        |      |      | 0.8  | V    |
| PWM Pulse On Delay Time  | PWM Input to IGBT Gate |      | 0.5  |      | μs   |
| PWM Pulse Off Delay Time | PWM Input to IGBT Gate |      | 0.45 |      | μs   |
| Gate Output Voltage Low  |                        |      |      | 0.1  | V    |
| Gate Output Voltage High |                        | 14   | 15   | 16   | V    |
| Alarm Output Impedance   | Fault pull down        |      | 10   | 30   | Ω    |
| Alarm Fault Hold Time    |                        |      | 26.2 |      | ms   |

\* measured under ambient temperature 25°C. unless otherwise specified.



## 6. Junction Temperature Monitor Function

### Table 7-3 Junction temperature monitoring

| IGBT temperature communication | Description              | Min  | Тур  | Max  | Unit |
|--------------------------------|--------------------------|------|------|------|------|
| Output high voltage            |                          | 4.85 | 5.00 | 5.15 | V    |
| Output low voltage             |                          |      |      | 0.1  | V    |
| Output frequency               |                          |      | 50   |      | kHz  |
| PWM duty                       | Temp $V_{\rm F}$ = 2.23V |      | 30   |      | %    |
| PWM duty                       | Temp $V_{\rm F}$ = 1.65V |      | 82   |      | %    |

\* measured under ambient temperature 25°C. unless otherwise specified.



Fig. 7-3 Relationship among  $T_{\rm vj}$ ,  $V_{\rm F}$  and Duty

\* Note:

### $I_{\rm F}$ current specification on ADuM4138: $\pm 5 \%$ @ $I_{\rm F}$ = 1(mA).

 $\rightarrow$  V<sub>F</sub> shift of Temperature Diode under ±5% of I<sub>F</sub> (1mA) : ±11 mV.



Fig. 7-4  $V_{\rm F}$  -  $T_{\rm vj}$  shift according to  $I_{\rm F}$ @±0.05(mA)

# 7. PN Voltage Monitoring Function

### Table 7-4 PN voltage monitoring

| PN Voltage Communication | Description | Min | Тур  | Max | Unit |
|--------------------------|-------------|-----|------|-----|------|
| Output Voltage           | PN = 100V   |     | 0.79 |     | V    |
| Output Voltage           | PN = 250V   |     | 1.94 |     | V    |
| Output Voltage           | PN = 400V   |     | 3.09 |     | V    |

\* measured under ambient temperature 25°C. unless otherwise specified.



Fig. 7-5 Output voltage vs. PN voltage

# 8. Short-Circuit (SC) Protection Function

### Table 7-5 Short-circuit protection conditions

| IGBT Short Protection               | Description | Min  | Тур  | Max  | Unit |
|-------------------------------------|-------------|------|------|------|------|
| Short Current Detect Voltage        | Point 1     |      | 3.14 |      | V    |
| Gate Clamp Voltage                  | Point 2     |      | 12   |      | V    |
| Fixation Time                       | Point 3     |      | 800  |      | ns   |
| Soft-OFF MOS FET Impedance          | Point 4     |      | 30   |      | Ω    |
| Miller Clamp Gate Voltage Threshold | Point 5     | 1.75 | 2.00 | 2.25 | V    |

\* measured under ambient temperature 25°C. unless otherwise specified.



Fig. 7-6 Short-circuit protection function



# 9. Timing Diagrams

Input Waveform to PWM-U, V, W, X, Y, Z (to Gate)



Fig. 7-7 Input signal waveform for PWM input



### 10. Generic Sample Factory Settings

The default gate resistor and dividing resistor for current sense function are shown in below Table 7-6.

 $R_{\rm G}$  setting are set by taking account of Short circuit protection and surge voltage which does not exceed 700V at -40°C.

#### Table 7-6 Default value of the circuit board parameters

|           | $R_{	ext{Gon}}\left(\Omega ight)$ / $R_{	ext{Goff}}\left(\Omega ight)$ | C <sub>GE</sub> (μF) | $R_{\text{SENSE}}$ (divider: $\Omega/\Omega$ ) |
|-----------|------------------------------------------------------------------------|----------------------|------------------------------------------------|
| Upper arm | 2.8 / 2.8                                                              | 0.047                | 47 / 82                                        |
| Lower arm | 2.8 / 2.8                                                              | 0.068                | 47 / 82                                        |

## 11. Recommended Start-Up Testing

Caution: Handling devices with high voltage involves risk to life. It is imperative to comply with all respective precautions and safety regulations.

- 1. Connect the driver through the 26 pin post header to test board and supply +12V through pins 12 and 13.
- 2. Although there is no fault reset pin, fault function is automatically reset by power-off and power-on sequence.
- 3. Check the gate voltage according to followings:
  - a) For the off-state, the nominal gate voltage should be 0V.
  - b) For the on-state, it is +14 to +16V
  - c) Check the current consumption of the driver without the clock signals and the desired switching frequency driving a capacitive load equivalent to the Gate Capacitance of the IGBT.
     In the case of M653 module, 0.22µF of the capacitance is recommended.
     And its consumption is around 600mA as typical value.
     On the other hand, it is less than 200mA without any load.
  - d) Above test should be performed before board installation.



## 12. Evaluation Board Appearance

IGBT driving part for each phase, which are U, V, W, X, Y and Z, has an isolated power supply. The driver IC has an isolated Input-Output.





(b) Bottom view (mirror)

Fig. 7-8 Evaluation board appearance



| Pin Number | Pin Name | Туре   | Description                                               |
|------------|----------|--------|-----------------------------------------------------------|
| 1          | PWM-U    | Input  | Gate drive PWM signal for phase U                         |
| 2          | PWM-V    | Input  | Gate drive PWM signal for phase V                         |
| 3          | PWM-W    | Input  | Gate drive PWM signal for phase W                         |
| 4          | Temp-U   | Output | Temperature data output of phase U                        |
| 5          | Temp-V   | Output | Temperature data output of phase V                        |
| 6          | Temp-W   | Output | Temperature data output of phase W                        |
| 7          | ALM-U    | Output | Alarm signal output when any fault is occurred on phase U |
| 8          | ALM-V    | Output | Alarm signal output when any fault is occurred on phase V |
| 9          | ALM-W    | Output | Alarm signal output when any fault is occurred on phase W |
| 10         | Vout     | Output | Potential monitor at P3 which shows Battery voltage       |
| 11         | NC       | NC     | Not connected                                             |
| 12         | IG       | Supply | +12.0V Power Supply                                       |
| 13         | IG       | Supply | +12.0V Power Supply                                       |
| 14         | PWM-X    | Input  | Gate drive PWM signal for phase X                         |
| 15         | PWM-Y    | Input  | Gate drive PWM signal for phase Y                         |
| 16         | PWM-Z    | Input  | Gate drive PWM signal for phase Z                         |
| 17         | Temp-X   | Output | Temperature data output of phase X                        |
| 18         | Temp-Y   | Output | Temperature data output of phase Y                        |
| 19         | Temp-Z   | Output | Temperature data output of phase Z                        |
| 20         | ALM-X    | Output | Alarm signal output when any fault is occurred on phase X |
| 21         | ALM-Y    | Output | Alarm signal output when any fault is occurred on phase Y |
| 22         | ALM-Z    | Output | Alarm signal output when any fault is occurred on phase Z |
| 23         | NC       | NC     | Not connected                                             |
| 24         | NC       | NC     | Not connected                                             |
| 25         | PG       | Supply | Ground                                                    |
| 26         | PG       | Supply | Ground                                                    |

### Table 7-7 External connector pin assignment

| PWM-U       0 1       140         PWM-V       0 2       150         PWM-W       0 3       160         Temp-U       0 4       170         Temp-V       0 5       180         Temp-W       0 6       190         ALM-U       0 7       200         ALM-V       0 8       210         ALM-V       0 9       220         Vout       0 10       230         NC       0 11       240         IG       0 12       250         IG       0 13       260 | PWM-X<br>PWM-Z<br>Temp-X<br>Temp-Y<br>Temp-Z<br>ALM-X<br>ALM-Y<br>ALM-Z<br>NC<br>NC<br>PG<br>PG |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|

(a) External connector pin assignment



(b) Top view of external connector

Fig. 7-9 Pin assignment and top view of external connector



## 13. Interface Connector and Harness

Connection to the evaluation board is performed by an optional interface cable. As shown in Fig. 7-10(a), the optional interface cable has 2 socket housings in both ends respectively. So any other interface board preparation might be useful for testing.



Fig. 7-10 Interface harness and its application



## 14. Evaluation Board Installation to the Module

Caution: An IGBT module is an electric device and weak against ESD, so please take it with enough countermeasure against electro static prior to board installation.

Board installation procedure:

(a) Remove the sponge with take care.

A conductive sponge is attached to protect the module from ESD prior to factory shipment.

- (b) Confirm whether there is any vended control pin or not. There are 30 pcs of control pin and one voltage detection pin, so call P-terminal, all terminals should be confirmed.
- (c) Mount the board along the alignment pin at the both side of the module.
- (d) Tighten the screws within specific torque.

(3)

 $\oplus$ 

(2)

Screw size and torque are shown in

 $\oplus$ 

(4)

 $\oplus$  $\oplus$ 

(c) Sequence of tightening screw

(7)

 $\oplus$  $\oplus$ 

the specification sheet.

(6)

(e) Soldering the control pins. Soldering condition is shown in the specification sheet.

(5)

(8)



(a) protection the module from ESD

(1)



(d) The installed board on the module

Fig. 7-11 The board installation



# 15. Evaluation Board Circuit Diagram

| LY20-26P-DT1-P1E<br>CN1 |                                |                                  |  |
|-------------------------|--------------------------------|----------------------------------|--|
|                         | PWM-U 1                        | PWM-X 14                         |  |
|                         | PWM-V 2<br>PWM-W 3             | PWM-Y 15                         |  |
|                         | TEMP-U 4<br>TEMP-V 5           | TEMP-X 17                        |  |
|                         | TEMP-W     6       ALM-U     7 | TEMP-Z     19       ALM-X     20 |  |
|                         | ALM-V 28                       | ALM-Y 21<br>ALM-Z 22             |  |
|                         | VOUT 10                        | NC 23                            |  |
|                         | IG 12<br>IG 13                 | PG 25                            |  |
|                         |                                | <br>                             |  |

Fig. 7-12 External connector pin assignment





Fig. 7-13 Power supply conditioner





Fig. 7-14 Interface logic

Fig. 7-15 5V power supply





Fig. 7-16 Gate driver for Phase U





Fig. 7-17 Gate driver for Phase X





Fig. 7-18 Gate driver for Phase V





Fig. 7-19 Gate driver for Phase Y





Fig. 7-20 Gate driver for Phase W




Fig. 7-21 Gate driver for Phase Z





Fig. 7-22 Voltage detection part at Phase W, Z



## 16. Evaluation Board Dimensions



Fig. 7-23 Assembly drawing of the driver board (Top)



### 17. Assembly Drawing



Fig. 7-24 Assembly drawing of the driver board (Top)





Fig. 7-25 Assembly drawing of the driver board (Bottom)



## 18. Layout



Fig. 7-26 Driver board – Top layer





Fig. 7-27 Driver board – Layer 2





Fig. 7-28 Driver board – Layer 3





Fig. 7-29 Driver board – Layer 4





Fig. 7-30 Driver board – Layer 5





Fig. 7-31 Driver board – Bottom layer



## 19. Parts List

#### Table 7-8 Bill of materials for the M653 IGBT module evaluation board

| No | Value / Device                   | Package type<br>(JEDEC) | Classification                     | Reference               |                         |                         |                         |                         |                         |
|----|----------------------------------|-------------------------|------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| 1  | SJPZ-N27VR<br>Sanken             | No description          | Diode                              | D5101                   |                         |                         |                         |                         |                         |
| 2  | CRH01<br>Toshiba                 | Toshiba:3-2A1A          | Diode                              | D1101                   | D1201                   | D1301                   | D1401                   | D1501                   | D1601                   |
| 3  | 1SS380TF<br>Rohm                 | SOD-323                 | Diode                              | D1701                   | D1702                   | D1721                   | D1722                   |                         |                         |
| 4  | 2SAR542P<br>Rohm                 | SOT89                   | PNP Middle<br>Power<br>Transistor  | Q1101                   | Q1201                   | Q1301                   | Q1401                   | Q1501                   | Q1601                   |
| 5  | 2SK2857C-T1-<br>AZ/AY<br>Renesas | SOT89                   | Nch MOS-FET                        | FT4101                  | FT4201                  | FT4301                  | FT4401                  | FT4501                  | FT4601                  |
| 6  | SSM3K7002BF<br>Toshiba           | TO-236MOD               | Nch MOS-FET                        | FT1102                  | FT1202                  | FT1302                  | FT1402                  | FT1502                  | FT1602                  |
| 7  | ADuM4138<br>Analog Devices       | ADI:28L SSOP            | Driver IC<br>Automotive            | IC1101                  | IC1201                  | IC1301                  | IC1401                  | IC1501                  | IC1601                  |
| 8  | TA58L05F<br>Toshiba              | HSOP3-P2.30D            | Low-dropout<br>regulators          | IC2702                  |                         |                         |                         |                         |                         |
| 9  | TC74VHC9541FT<br>Toshiba         | TSSOP14-004-0.65A       | Logic IC                           | IC2701                  |                         |                         |                         |                         |                         |
| 10 | BA2904Y<br>Rohm                  | SSOP-B8                 | OP-Amp<br>Automotive               | IC1701                  |                         |                         |                         |                         |                         |
| 11 | VGT12EEM-<br>200S1A4<br>TDK      | SMD                     | Transformers<br>Automotive         | TR1101                  | TR1201                  | TR1301                  | TR1401                  | TR1501                  | TR1601                  |
| 12 | CLF12555T-220M<br>TDK            | SMD                     | Power Inductor                     | L5101                   |                         |                         |                         |                         |                         |
| 13 | BLM15AG102SH1<br>Murata          | SMD 1005(mm)            | Chip ferrite<br>bead<br>Automotive | L1103<br>L1104<br>L2101 | L1203<br>L1204<br>L2201 | L1303<br>L1304<br>L2301 | L1403<br>L1404<br>L2401 | L1503<br>L1504<br>L2501 | L1603<br>L1604<br>L2601 |
| 14 | BLM21PG331SH1<br>Murata          | SMD 2012(mm)            | Chip ferrite<br>bead<br>Automotive | L5102                   | L5103                   |                         |                         |                         |                         |
| 15 | LQG15HHR22J02<br>Murata          | SMD 1005(mm)            | Inductor<br>Automotive             | L1101<br>L1102          | L1201<br>L1202          | L1301<br>L1302          | L1401<br>L1402          | L1501<br>L1502          | L1601<br>L1602          |

Contact to Analog Devices. Inc.

Shanghai branch:

Person in charge: Zhibin Xu, Tel: +86-21-2320 8151, Email: Zhibin.Xu@analog.com

Taiwan branch:

Person in charge: Jackey Chen, Tel: +886 (2) 2650-2823, Email: Jackey.Chen@analog.com

| No | Value / Device | Package type | Classification |                                           |                                  | Refe                             | ence                             |                                  |                                  |
|----|----------------|--------------|----------------|-------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| 16 | 25V,100uF      | φ6.3xH7.7    | Capacitor      | C5106                                     | C5151                            | C5152                            |                                  |                                  |                                  |
| 17 | 50V,39pF,CH    | SMD 1005(mm) | Capacitor      | C1702                                     | C1706                            |                                  |                                  |                                  |                                  |
| 18 | 50V,100pF,CH   | SMD 1005(mm) | Capacitor      | C1724<br>C2102                            | C2202                            | C2302                            | C2402                            | C2502                            | C2602                            |
| 19 | 50V,330pF,CH   | SMD 1005(mm) | Capacitor      | C2101                                     | C2201                            | C2301                            | C2401                            | C2501                            | C2601                            |
| 20 | 50V,1000pF     | SMD 1005(mm) | Capacitor      | C1111<br>C1112<br>C1114<br>C1131<br>C1726 | C1211<br>C1212<br>C1214<br>C1231 | C1311<br>C1312<br>C1314<br>C1331 | C1411<br>C1412<br>C1414<br>C1431 | C1511<br>C1512<br>C1514<br>C1531 | C1611<br>C1612<br>C1614<br>C1631 |
| 21 | 50V,0.1uF      | SMD 1005(mm) | Capacitor      | C1725                                     |                                  |                                  |                                  |                                  |                                  |
| 22 | 50V,560pF,CH   | SMD 1608(mm) | Capacitor      | C1105                                     |                                  | C1305                            |                                  | C1505                            |                                  |
| 23 | 50V,4700pF     | SMD 1608(mm) | Capacitor      |                                           | C1205                            |                                  | C1405                            |                                  | C1605                            |
| 24 | 50V,0.01uF     | SMD 1608(mm) | Capacitor      | C4101                                     | C4201                            | C4301                            | C4401                            | C4501                            | C4601                            |
| 25 | 50V,0.047uF    | SMD 1608(mm) | Capacitor      | C1107                                     |                                  | C1307                            |                                  | C1507                            |                                  |
| 26 | 50V,0.068uF    | SMD 1608(mm) | Capacitor      |                                           | C1207                            |                                  | C1407                            |                                  | C1607                            |
| 27 | 50V,0.1uF      | SMD 1608(mm) | Capacitor      | C1115<br>C2705                            | C1215<br>C5105                   | C1315                            | C1415                            | C1515                            | C1615                            |
| 28 | 25V,1uF        | SMD 1608(mm) | Capacitor      | C1104<br>C1106<br>C1109<br>C1110<br>C2701 | C1204<br>C1206<br>C1209<br>C1210 | C1304<br>C1306<br>C1309<br>C1310 | C1404<br>C1406<br>C1409<br>C1410 | C1504<br>C1506<br>C1509<br>C1510 | C1604<br>C1606<br>C1609<br>C1610 |
| 29 | 250V,100pF     | SMD 2012(mm) | Capacitor      | C1701                                     | C1721                            |                                  |                                  |                                  |                                  |
| 30 | 25V,2.2uF      | SMD 2012(mm) | Capacitor      | C5101                                     | C5102                            | C5103                            | C5104                            |                                  |                                  |

### Table 7-9 Bill of materials for the M653 IGBT module evaluation board (cont'd)



| No | Value / Device | Package type<br>(JEDEC) | Classification |                                                                                                                                     | Reference                                                                                                                           |                                                                                                                                     |                                                                                                                            |                                                                                                                            |                                                                                                                            |
|----|----------------|-------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 31 | 25V,4.7uF      | SMD 2012(mm)            | Capacitor      | C1113<br>C1116<br>C1117<br>C1118<br>C1119<br>C1120<br>C1129<br>C1130<br>C1135<br>C1136<br>C1137<br>C4132<br>C4133<br>C4134<br>C2702 | C1213<br>C1216<br>C1217<br>C1218<br>C1219<br>C1220<br>C1229<br>C1230<br>C1235<br>C1236<br>C1237<br>C4232<br>C4233<br>C4234<br>C2703 | C1313<br>C1316<br>C1317<br>C1318<br>C1319<br>C1320<br>C1329<br>C1330<br>C1335<br>C1336<br>C1337<br>C4332<br>C4333<br>C4334<br>C2704 | C1413<br>C1416<br>C1417<br>C1418<br>C1419<br>C1420<br>C1429<br>C1430<br>C1435<br>C1436<br>C1437<br>C4432<br>C4433<br>C4434 | C1513<br>C1516<br>C1517<br>C1518<br>C1519<br>C1520<br>C1529<br>C1530<br>C1535<br>C1536<br>C1537<br>C4532<br>C4533<br>C4534 | C1613<br>C1616<br>C1617<br>C1618<br>C1619<br>C1620<br>C1629<br>C1630<br>C1635<br>C1636<br>C1637<br>C4632<br>C4633<br>C4634 |
| 32 | 27k/D,0.1W     | SMD 1005(mm)            | Resistor       | R1710                                                                                                                               | R1730                                                                                                                               |                                                                                                                                     |                                                                                                                            |                                                                                                                            |                                                                                                                            |
| 33 | 62k/D,0.1W     | SMD 1005(mm)            | Resistor       | R1712                                                                                                                               | R1732                                                                                                                               |                                                                                                                                     |                                                                                                                            |                                                                                                                            |                                                                                                                            |
| 34 | 680k/D,0.1W    | SMD 1005(mm)            | Resistor       | R1711                                                                                                                               | R1731                                                                                                                               |                                                                                                                                     |                                                                                                                            |                                                                                                                            |                                                                                                                            |
| 35 | 1k,0.1W        | SMD 1005(mm)            | Resistor       | R1112<br>R1113                                                                                                                      | R1212<br>R1213                                                                                                                      | R1312<br>R1313                                                                                                                      | R1412<br>R1413                                                                                                             | R1512<br>R1513                                                                                                             | R1612<br>R1613                                                                                                             |
| 36 | 3k,0.1W        | SMD 1005(mm)            | Resistor       | R1110                                                                                                                               | R1210                                                                                                                               | R1310                                                                                                                               | R1410                                                                                                                      | R1510                                                                                                                      | R1610                                                                                                                      |
| 37 | 4.7k,0.1W      | SMD 1005(mm)            | Resistor       | R2102                                                                                                                               | R2202                                                                                                                               | R2302                                                                                                                               | R2402                                                                                                                      | R2502                                                                                                                      | R2602                                                                                                                      |
| 38 | 10k,0.1W       | SMD 1005(mm)            | Resistor       | R1137<br>R1733                                                                                                                      | R1237<br>R2710                                                                                                                      | R1337                                                                                                                               | R1437                                                                                                                      | R1537                                                                                                                      | R1637                                                                                                                      |
| 39 | 100k,0.1W      | SMD 1005(mm)            | Resistor       | R4102<br>R1734                                                                                                                      | R4202                                                                                                                               | R4302                                                                                                                               | R4402                                                                                                                      | R4502                                                                                                                      | R4602                                                                                                                      |
| 40 | 0R,2A          | SMD 1608(mm)            | Resistor       | R1116<br>R1701                                                                                                                      | R1216<br>R1721                                                                                                                      | R1316                                                                                                                               | R1416                                                                                                                      | R1516                                                                                                                      | R1616                                                                                                                      |
| 41 | 330m/F,0.2W    | SMD 1608(mm)            | Resistor       | R4104<br>R4105<br>R4106<br>R4107<br>R4112<br>R4113                                                                                  | R4204<br>R4205<br>R4206<br>R4207<br>R4212<br>R4213                                                                                  | R4304<br>R4305<br>R4306<br>R4307<br>R4312<br>R4313                                                                                  | R4404<br>R4405<br>R4406<br>R4407<br>R4412<br>R4413                                                                         | R4504<br>R4505<br>R4506<br>R4507<br>R4512<br>R4513                                                                         | R4604<br>R4605<br>R4606<br>R4607<br>R4612<br>R4613                                                                         |

#### Table 7-10 Bill of materials for the M653 IGBT module evaluation board (cont'd)

Each tolerance of resistor are described on the part table like below image or  $\pm 5\%$  unless otherwise specified.

Example: No. 32, 27k/D, 0.1W: Character "D" means  $\pm$  0.5%, "F" means  $\pm$  1.0% Maker name of the resistors: TAIYOSHA ELECTRIC CO.,LTD.



| No | Value / Device              | Package type<br>(JEDEC) | Classification          |                                  | Reference                        |                                  |                                  |                                  |                                  |
|----|-----------------------------|-------------------------|-------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| 42 | 3,0.25W                     | SMD 1608(mm)            | Resistor                | R1131                            | R1231                            | R1331                            | R1431                            | R1531                            | R1631                            |
| 43 | 5.6/D,0.25W                 | SMD 1608(mm)            | Resistor                | R1119<br>R1120<br>R1123<br>R1124 | R1219<br>R1220<br>R1223<br>R1224 | R1319<br>R1320<br>R1323<br>R1324 | R1419<br>R1420<br>R1423<br>R1424 | R1519<br>R1520<br>R1523<br>R1524 | R1619<br>R1620<br>R1623<br>R1624 |
| 44 | 10,0.25W                    | SMD 1608(mm)            | Resistor                | R1127                            | R1227                            | R1327                            | R1427                            | R1527                            | R1627                            |
| 45 | 20,0.25W                    | SMD 1608(mm)            | Resistor                | R1128                            | R1228                            | R1328                            | R1428                            | R1528                            | R1628                            |
| 46 | 47/D,0.25W                  | SMD 1608(mm)            | Resistor                | R1118<br>R4101                   | R1218<br>R4201                   | R1318<br>R4301                   | R1418<br>R4401                   | R1518<br>R4501                   | R1618<br>R4601                   |
| 47 | 82/D,0.25W                  | SMD 1608(mm)            | Resistor                | R1117                            | R1217                            | R1317                            | R1417                            | R1517                            | R1617                            |
| 48 | 2.7k,0.25W                  | SMD 1608(mm)            | Resistor                | R1114<br>R1115<br>R1138          | R1214<br>R1215<br>R1238          | R1314<br>R1315<br>R1338          | R1414<br>R1415<br>R1438          | R1514<br>R1515<br>R1538          | R1614<br>R1615<br>R1638          |
| 49 | 18k/D,0.25W                 | SMD 1608(mm)            | Resistor                | R1103                            | R1203                            | R1303                            | R1403                            | R1503                            | R1603                            |
| 50 | 1M/D,0.25W                  | SMD 1608(mm)            | Resistor                | R1702<br>R1708<br>R1726          | R1703<br>R1709<br>R1727          | R1704<br>R1722<br>R1728          | R1705<br>R1723<br>R1729          | R1706<br>R1724                   | R1707<br>R1725                   |
| 51 | 220,0.2W                    | SMD 1005(mm)            | Resistor                | R2103                            | R2203                            | R2303                            | R2403                            | R2503                            | R2603                            |
| 52 | 3.6k,0.2W                   | SMD 1005(mm)            | Resistor                | R2101                            | R2201                            | R2301                            | R2401                            | R2501                            | R2601                            |
| 53 | LY20-26P-DT1-<br>P1E<br>JAE | 26pin                   | Connector for interface | CN1                              |                                  |                                  |                                  |                                  |                                  |
| 54 | PM-80<br>Mac8               | 5pin                    | Socket pin              | TP1101-<br>5                     | TP1201-<br>5                     | TP1301-<br>5                     | TP1401-<br>5                     | TP1501-<br>5                     | TP1601-<br>5                     |

### Table 7-11 Bill of materials for the M653 IGBT module evaluation board (cont'd)

### Table 7-12 Bill of not populated materials for the M653 IGBT module evaluation board

| No | Value / Device | Package type<br>(JEDEC) | Classification | Reference                                          |                                                    |                                                    |                                                    |                                                    |                                                    |
|----|----------------|-------------------------|----------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| 1  |                | 1005R                   |                | R2711                                              |                                                    |                                                    |                                                    |                                                    |                                                    |
| 2  |                | 1608R                   |                | R1101<br>R1121<br>R1122<br>R1125<br>R1126<br>R1135 | R1201<br>R1221<br>R1222<br>R1225<br>R1226<br>R1235 | R1301<br>R1321<br>R1322<br>R1325<br>R1326<br>R1335 | R1401<br>R1421<br>R1422<br>R1425<br>R1426<br>R1435 | R1501<br>R1521<br>R1522<br>R1525<br>R1526<br>R1535 | R1601<br>R1621<br>R1622<br>R1625<br>R1626<br>R1635 |
| 3  |                | 1608C                   |                | C1139                                              | C1239                                              | C1339                                              | C1439                                              | C1539                                              | C1639                                              |
| 4  |                | 2012C                   |                | C1101                                              | C1201                                              | C1301                                              | C1401                                              | C1501                                              | C1601                                              |
| 5  |                | CRH01                   |                | D1102                                              | D1202                                              | D1302                                              | D1402                                              | D1502                                              | D1602                                              |
| 6  | 50V,100pF,CH   | SMD 1608(mm)            | Capacitor      | C1102                                              | C1202                                              | C1302                                              | C1402                                              | C1502                                              | C1602                                              |



# Chapter 8 Sense IGBT Performance

| 1. Scope                                                                                   | 8-2 |
|--------------------------------------------------------------------------------------------|-----|
| 2. Function                                                                                | 8-2 |
| 3. Recommended R <sub>SE</sub> : Sense Resistor                                            | 8-3 |
| 4. Typical Characteristics of $V_{\rm SE}$                                                 | 8-4 |
| 5. $V_{\rm SE}$ Dependence of $I_{\rm C}$ and $T_{\rm vj}$ : (i) Short-Circuit / Transient | 8-4 |
| 6. $V_{SE}$ Dependence of $I_C$ and $T_{vj}$ : (ii) Over-current / Transient               | 8-5 |
| 7. $V_{SE}$ Dependence of $I_C$ and $T_{vj}$ : (iii) Over-current / Steady State           | 8-6 |
| 8. Application for SC Protection Function by Using ADI-ADuM4138                            | 8-7 |



### 1. Scope

This chapter is explaining about a sense IGBT (Insulated Gate Bipolar Transistor) performance. Shown typical value and the tendency in this material have been obtained by certain IGBT and test setup.

So the data in this material does not limit usage of the IGBT and the data are just reference of the outline of the sense IGBT.

★ Since the driver IC revision differs with respect to the below explanation for the sense IGBT function and the content of the explanation provided for the evaluation board in Chapter 7, there may be differences in certain values such as the threshold voltage, but please understand that these values are only given as references to explain product operation.

### 2. Function

The function of the sense-IGBT is to detect overcurrent like Short-Circuit (SC) in the IGBT. As showing in the Fig. 8-1, the sense IGBT is included in the same IGBT chip.  $I_{\rm C}$  sense value is following  $I_{\rm C}$  main and flows at a certain split flow ratio.

 $I_{\rm C\_sense} \propto I_{\rm C\_main} --- eq.-1$ 

To detect the overcurrent as a voltage, a sense resistor  $R_{SE}$  is recommended. How to design the  $R_{SE}$  is shown in the following pages.



Fig. 8-1 Function of the sense-IGBT and the usage



## 3. Recommended $R_{SE}$ : Sense Resistor

Using 2 pair of resistors,  $R_{SE1}$  and  $R_{SE2}$ , is recommended as shown in Fig. 8-2, for taking account of easy design for a Short-circuit detecting voltage:  $V_{SC}$ .

Total value of  $R_{SE}$ ,  $R_{SE1}$  +  $R_{SE2}$ , is designed by following  $V_{SE}$  characteristics.

- Higher R<sub>SE</sub> is needed for higher SC detection speed. As shown in Fig. 8-3(a), steeper dV<sub>SE</sub> /dt is needed for high speed SC protection, and dV<sub>SE</sub>/dt tends to increase as R<sub>SE</sub> value increasing shown in Fig. 8-3(b).
- 2) On the other hand, when R<sub>SE</sub> is much higher value, the SC protection circuit and/or IC might be broken down due to turn-off surge voltage of V<sub>SE</sub>, Fig. 8-3(c). The V<sub>SE</sub> on turn-off depends on R<sub>SE</sub>, Fig. 8-3(d) If SC protection circuit is driven by around 15V,

 $V_{\rm SE}$  value should be under 15V, at least.

3) Based on above trade-off and including safety margin,  $120\Omega$  of  $R_{SE}$  is recommended for Short-circuit current detection resistance.



Fig. 8-2 V<sub>SE</sub> and R<sub>SE</sub>

\*Relating  $V_{SE}$  data is taken by typical circuit constant as shown in main manual. So detail parameter designing should be confirmed under required system setting.



Fig. 8-3  $V_{\rm SE}$  performance



## 4. Typical Characteristics of $V_{SE}$

 $V_{\rm SE}$  is defined as 3 parts on a switching waveform showing in Fig. 8-4.

- (i) Short-circuit: transient
- (ii) Over-current: transient
- (iii) Over-current: steady state

 $V_{\rm SE}$  characteristics on each part are illustrated in followings.

Measurement parameters:

- $I_{\rm C} = 200 \sim 1000$ , step 200A
- *T*<sub>vj</sub> = -40, 25, 125, 175°C
- $R_{\rm SE} = 120\Omega$



Fig. 8-4  $V_{\rm SE}$  on the switching waveform

# 5. $V_{SE}$ Dependence of $I_C$ and $T_{vj}$ : (i) Short-Circuit / Transient



Fig. 8-5 Typical data example of  $V_{SE}$  characteristics on  $I_{C}$  and  $T_{vi}$  at station-(i)

© Fuji Electric Co., Ltd. All rights reserved.



# 6. $V_{SE}$ Dependence of $I_C$ and $T_{vj}$ : (ii) Over-current / Transient



Fig. 8-6  $V_{\rm SE}$  on the switching waveform



Fig. 8-7 Typical data example of  $V_{SE}$  characteristics on  $I_C$  and  $T_{vj}$  at station-(ii)



# 7. $V_{SE}$ Dependence of $I_C$ and $T_{vj}$ : (iii) Over-current / Steady State



Fig. 8-8  $V_{\rm SE}$  on the switching waveform



Fig. 8-9 Typical data example of  $V_{SE}$  characteristics on  $I_C$  and  $T_{vj}$  at station-(iii)



## 8. Application for SC Protection Function by Using ADI-ADuM4138<sup>\*1</sup>).

Procedure of dividing resistor design.

- Take V<sub>SE</sub> dependence of T<sub>vj</sub> operation temperature by certain R<sub>SE</sub> and I<sub>C</sub> conditions. Where, 120Ω of R<sub>SE</sub> is recommended as explained in front page. For ADI driver IC, V<sub>SE</sub> characteristics on the over-current / transient state showing in P8-4 is recommended. Please see (ii) part in Fig. 8-10. When 120Ω of R<sub>SE</sub> and 800A of IC are used, typical example result: Line-1 is shown in Fig. 8-11. In this case, 25 to 175°C of T<sub>vj</sub> operation range are assumed.
   Because V<sub>SE</sub> value is proportional to T<sub>vj</sub>, threshold level of V<sub>SE</sub> is set by maximum operational temperature. → V<sub>SE</sub> = 2.87@175°C --- Line-2
- 3) On the other hand,  $V_{\rm SC}$  level of ADuM4138 is 2V type.

 $V_{\rm SC} = V_{\rm SE}^* R_{\rm SE2} / (R_{\rm SE1} + R_{\rm SE2}) --- eq.-1$ 

 $R_{\text{SE1}} + R_{\text{SE2}} = 120 --- \text{eq.-2}$ 

From eq.-1, eq.-2 and constants,  $R_{SE1} = 34.3\Omega$ ,  $R_{SE2} = 85.7\Omega$ , respectively.

Because E24 series resistor set were used,  $R_{SE1} = 36\Omega$  and  $R_{SE2} = 82\Omega$  were selected, respectively.

- 4) After  $R_{SE1}$  and  $R_{SE2}$  are replaced by certain resistor's value, the short–circuit protection function on RT of  $T_{vi}$  shall be checked.
- 5) Then, the  $V_{SE}$  at SC on  $T_{vi}$  operation range are taken. --- Line-3

This  $V_{SE}$  value is the peak value of the  $V_{SE}$  waveform at the short circuit shown in Fig. 8-3(a).

6) Line-2 never cross Line-3 on  $T_{vj}$  operation range is required condition in this setting.

\*In the case of short-circuit protection function by using ADI driver IC, even if 12V clamp function is activated during mirror term on gate driving, there is no concern on dissipation.

The gate voltage is still increased in this term that is why influence of 12V clamp function to the gate voltage fluctuation is negligible.

During normal switching operation which is less than maximum current ratings, even if a  $V_{SE}$  value exceeds the threshold level of 2.87V on the part-(i), the soft turn-off function is not activated because the peak width is less than 800ns of delay time.

\*1) ADI: Analog Devices, Inc.





Fig. 8-10 Circuit diagram of SC protection by using ADuM1438



Fig. 8-11 SC protection function characteristics in terms of  $V_{\rm SE}$ 



# Chapter 9 Temperature Sensing Function

| 1. Scope                                                  | 9-2 |
|-----------------------------------------------------------|-----|
| 2. Function                                               | 9-2 |
| 3. Temperature Sensing Characteristics                    | 9-2 |
| 4. Temperature Sensing Function when Using ADI-ADuM4138   | 9-3 |
| 5. Temperature Sensing Correction Method for ADI-ADuM4138 | 9-3 |



### 1. Scope

This section will describe the temperature sensing function. It will also describe the details of applying the temperature sensing function during actual ADI-ADuM4138 usage, as well as provide details on the correction function and correction method for dealing with temperature sensing voltage fluctuation.

## 2. Function

The temperature sensing function is a function that detects the IGBT junction temperature  $T_{vj}$ . The temperature sensor is integrated on the same chip as the IGBT chip and outputs a temperature sensing voltage that corresponds to  $T_{vj}$  based on a constant current flow. The temperature sensing voltage is characterized by its linearity with the temperature, and as such, this characteristic makes it easy to achieve a  $T_{vj}$  monitoring function.

## 3. Temperature Sensing Characteristics

Fig. 9-1 shows the  $T_{vj}$  dependence for the temperature sensing voltage  $V_F$  when a constant current of 1 mA flows to the temperature sensor. Furthermore, Fig. 9-2 shows the dependence under a state in which the constant current fluctuates at 1 mA ±5%. In such a case, the temperature sensing voltage will fluctuate at ±11 mV.



Fig. 9-1  $V_{\rm F}$  -  $T_{\rm vi}$  dependence at  $I_{\rm F}$  = 1 mA





\* Note :

ADuM4138  $I_{\rm F}$  current specification: ±5% (at  $I_{\rm F}$  = 1 mA)

 $\rightarrow$  Temperature diode V<sub>F</sub> fluctuation at I<sub>F</sub> = 1 mA ±5%: ±11 mV

## 4. Temperature Sensing Function when Using ADI-ADuM4138

The ADuM4138 has a function to supply a constant current to the temperature-voltage conversion sensor built in the IGBT chip and a function to convert the temperature information returned to the voltage into the duty cycle of the PWM signal.

Fig. 9-3 shows an example of the dependence of the duty cycle of the PWM signal on the temperature sense voltage of the ADuM4138.

From the  $V_{\rm F}$  -  $T_{\rm vj}$  characteristic shown in Fig. 9-1 and the Duty -  $V_{\rm F}$  characteristic of Fig. 9-3, it is possible to finally obtain the duty cycle of the PWM signal corresponding to the junction temperature:  $T_{\rm vi}$  of the IGBT chip.



Fig. 9-3 PWM duty - V<sub>F</sub> dependence

## 5. Temperature Sensing Correction Method for ADI-ADuM4138

As shown in Fig. 9-2, the temperature sense voltage output from the IGBT on-chip temperature sensor varies due to variations in the constant current input to the temperature sensor and temperature dependence of the temperature sensor itself. The ADuM4138 has a function to correct the PWM duty cycle output with respect to the temperature sense voltage to realize more accurate temperature sensing. This function corrects the dispersion by adjusting the gain and offset of the operational amplifier for temperature sense voltage detection built into the IC. The correction value can be written to the EEPROM by the SPI communication function.

The correction method will be explained below for your reference. (If you want to correct the PWM duty cycle output in actual product, please contact ADI for detailed correction method.)

### 5.1 Temperature sensor function correction overview

The correction method is outlined below.

1) Table 9-1 shows the relationship (specification) of junction temperature, temperature sense voltage, and PWM duty cycle.

| Item                                    | Specification *1) |       |  |  |
|-----------------------------------------|-------------------|-------|--|--|
| Junction temperature $T_{vj}$           | 25°C              | 175°C |  |  |
| Temperature sensing voltage $V_{\rm F}$ | 2.23V             | 1.65V |  |  |
| PWM duty cycle D <sub>PWM</sub>         | 30%               | 82%   |  |  |

#### Table 9-1 Default value of the circuit board parameters

\*1) Refer to the specifications of the IGBT module and driver IC for the exact value



- 2) Get the current uncorrected characteristic data (junction temperature, PWM duty cycle).
- 3) Calculate the gain and offset value of the operational amplifier for temperature sense voltage detection built into the IC so as to correct the difference of the acquired characteristic data against the specification value. Fig. 9-4 shows the outline of the correction method.
- 4) Write the calculated gain and offset correction value to the EEPROM using the IC's SPI communication function.



Fig. 9-4 Overview of correction method

### 5.2 Acquisition of characteristic data

In order to make corrections, it is necessary to acquire current characteristic data.

1) Measurement conditions

Please flow cooling water of a given temperature to the water jacket so that  $T_{vj}$  of the IGBT module is at the target temperature. For actual measurement, measurement is recommended after sufficient time has elapsed since the coolant flowed into the water jacket.

2) Measurement items

We recommend data measurement on the low temperature side and measurement at as high a temperature as possible up to 175°C on the high temperature side. The more accurate the data acquisition in a wide range, the better the accuracy of correction.

### Table 9-2 Measurement item

| Measurement item                  | Measurement location                          | Measurement value                            |                                              |  |
|-----------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|--|
| Junction temperature $T_{\rm vj}$ | Temperature of cooling water and water jacket | Measurement value $\mathcal{T}_{ m vj\;LOW}$ | Measurement value $\mathcal{T}_{ m vj~HIGH}$ |  |
| PWM duty cycle $D_{\rm PWM}$      | TEMP-U~W<br>TEMP-X~Z                          | Measurement value<br>D <sub>LOW</sub>        | Measurement value<br>D <sub>HIGH</sub>       |  |

### 5.3 Calculation of offset correction value

1) From the temperature sense related specification in Table 9-1, find the change amount of  $V_{\rm F}$  with respect to the change of  $T_{\rm vj}$  and the change amount of  $D_{\rm PWM}$  with respect to the change of  $V_{\rm F}$ .

- $dV_F/dT_{v_j \, spec} = (1.65V 2.23V) / (175^{\circ}C 25^{\circ}C) = -0.003867 [V / ^{\circ}C]$
- dD<sub>PWM</sub>/dV<sub>F spec</sub> = (82% 30%) / (1.65V 2.23V) = -89.655 [% / V]
- 2) Calculate the change amount of  $D_{PWM}$  with respect to the change of  $T_{vj}$  before correction the measured values for temperature-PWM duty cycle in Table 9-2.

•  $dD_{PWM}/dT_{vj \text{ measured}} = (D_{HIGH} - D_{LOW}) / (T_{vj \text{ HIGH}} - T_{vj \text{ LOW}}) = -O.O[\% / °C]$ 

- Calculate the estimated value of V<sub>F</sub> at 25°C and 175°C input to the driver IC from the temperature -PWM duty cycle measurement value.
  - $V_{F 25C} = 1 / (dD_{PWM}/dV_{F spec}) \times (dD_{PWM}/dT_{vj measured} \times (25^{\circ}C T_{vj HIGH}) + D_{HIGH} 30\%) + 2.23V$
  - $V_{F 175C} = 1 / (dD_{PWM}/dV_{F spec}) \times (dD_{PWM}/dT_{vj measured} \times (175^{\circ}C T_{vj HIGH}) + D_{HIGH} 30\%) + 2.23V$



- 4) Calculate the offset correction value. Calculate the correction amount so as to correct the difference between the estimated value  $V_{F_{25C}}$  of the temperature sensor voltage at 25°C and the reference value of 2.23V.
  - $\pm$  offset correction value = (V<sub>F 25C</sub> 2.23V) / dV<sub>OFFSET</sub>/bit  $\star$  dV<sub>OFFSET</sub>/bit : Offset correction coefficient = 0.0015
  - Process the calculated offset correction value as an integer.
    - ★ However, since this driver IC has a 6-bit correction bit for offset correction, the range of + offset correction value is 0 to 31, and the range of offset correction value is -1 to -32. Correction is not possible when exceeding this range.
- 5) Calculate the write value to the EEPROM from the offset correction value.

#### Table 9-3 Calculation of the offset value to write to the EEPROM

| Content                                                         | Conversion to binary number                                                                                                  |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| When the integerization offset correction value is positive (+) | Directly convert the positive integerization offset correction value (decimal) to a binary number                            |
| When the integerization offset correction value is negative (-) | First calculate 64 + (the negative integerization offset correction value (decimal)), and then convert it to a binary number |



Fig. 9-5 EEPROM write value and offset correction



### 5.4 Calculation of gain correction value

- 1) Calculate the gain correction value. Calculate the correction amount so as to correct the difference between the estimated value of the  $V_F$  change amount and the specification value with respect to the change of  $T_{vj}$  (25°C to 175°C) calculated from the temperature-PWM duty cycle measurement value.
  - ± gain correction value = (1 ( $V_{F 175C}$   $V_{F 25C}$ ) / (175°C 25°C ) / d $V_{F}$ /d $T_{vj spec}$ ) / d $V_{GAIN}$ /bit
    - \*  $dV_{GAIN}$ /bit : Gain correction coefficient = 0.00618
  - Calculate the gain correction value as an integer.
    - ★ However, since this driver IC has a 6-bit correction bit for gain correction, the range of + gain correction value is 0 to 31, and the range of gain correction value is -1 to -32. Correction is not possible when exceeding this range.
- 2) Calculate the write value to the EEPROM from the gain correction value.

#### Table 9-4 Calculation of the gain value to write to the EEPROM

| Content                                                       | Conversion to binary number                                                                                                |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| When the integerization gain correction value is positive (+) | Directly convert the positive integerization gain correction value (decimal) to a binary number                            |
| When the integerization gain correction value is negative (-) | First calculate 64 + (the negative integerization gain correction value (decimal)), and then convert it to a binary number |



#### Fig. 9-6 EEPROM write value and gain correction

### 5.5 Writing data to EEPROM of ADuM4138

In fact, in order to actually write data to the EEPROM in the IC using the SPI communication function of the ADuM4138, it is necessary to have SPI communication module and writing software to connect between PC and IC terminals.

For more information, please contact Analog Devices.

### 5.6 Example of actual calculation

- 1) From the temperature sense related specifications in Table 9-1, find the change amount of  $V_{\rm F}$  with respect to the change of  $T_{\rm vj}$  and the change amount of  $D_{\rm PWM}$  with respect to the change of  $V_{\rm F}$ .
  - $dV_F/dT_{v_{j} \text{ spec}} = (1.65\text{V} 2.23\text{V}) / (175^{\circ}\text{C} 25^{\circ}\text{C}) = -0.003867 [V / ^{\circ}\text{C}]$
  - $dD_{PWM}/dV_{F spec} = (82\% 30\%) / (1.65V 2.23V) = -89.655 [\% / V]$
- 2) Calculate the amount of change in  $D_{PWM}$  relative to the change in  $T_{vj}$  before correction from the measured temperature-PWM duty cycle in Table 9-5.

#### Table 9-5 Example measurements

| Measurement item                | Measurement value                   |                                      |  |  |  |
|---------------------------------|-------------------------------------|--------------------------------------|--|--|--|
| Junction temperature $T_{vj}$   | 28°C ( <i>T</i> <sub>vj LOW</sub> ) | 65°C ( <i>T</i> <sub>vj HIGH</sub> ) |  |  |  |
| PWM duty cycle D <sub>PWM</sub> | 29.37% (D <sub>LOW</sub> )          | 43.75% ( <i>D</i> <sub>HIGH</sub> )  |  |  |  |

- $dD_{PWM}/dT_{vj \text{ measured}} = (D_{HIGH} D_{LOW}) / (T_{vj \text{ HIGH}} T_{vj \text{ LOW}})$ = (43.75% - 29.37%) / (65°C - 28°C) = 0.3886 [% / °C]
- 3) Calculate the estimated value of  $V_F$  at 25°C and 175°C input to the driver IC from the temperature -PWM duty cycle measurement value.
  - $V_{F\,25C} = 1 / (dD_{PWM}/dV_{F\,spec}) \times (dD_{PWM}/dT_{vj\,measured} \times (25^{\circ}C T_{vj\,HIGH}) + D_{HIGH} 30\%) + 2.23V$ = 1 / (-89.655 [% / V]) × (0.3886 [% / °C] × (25^{\circ}C - 65^{\circ}C) + 43.75\% - 30\%) + 2.23V = 2.250V
  - $V_{F\,175C} = 1 / (dD_{PWM}/dV_{F\,spec}) \times (dD_{PWM}/dT_{vj\,measured} \times (175^{\circ}C T_{vj\,HIGH}) + D_{HIGH} 30\%) + 2.23V$ = 1 / (-89.655 [% / V]) × (0.3886 [% / °C] × (175^{\circ}C - 65^{\circ}C) + 43.75\% - 30\%) + 2.23V = 1.600V
- 4) Calculate the offset correction value. Calculate the correction amount so as to correct the difference between the estimated value V<sub>F 25C</sub> of the temperature sensor voltage at 25°C and the reference value of 2.23V.
  - $\pm$  offset correction value = ( $V_{F25C}$  2.23V) / d $V_{OFFSET}$ /bit = (2.250V - 2.23V) / 0.0015 = 13.33 \* d $V_{OFFSET}$ /bit : Offset correction coefficient = 0.0015
  - Calculate the offset correction value as an integer. Integerized offset correction value = 13
- 5) Calculate the write value to the EEPROM from the offset correction value.
  - + Integerization offset correction value (decimal number) = + 13
    - $\Rightarrow$  EEPROM write value = 13(DEC) = 001101(BIN)



6) Calculate the gain correction value. Calculate the correction amount so as to correct the difference between the estimated value of the  $V_{\rm F}$  change amount and the specification value with respect to the change of  $T_{\rm vj}$  (25°C to 175°C) calculated from the temperature-PWM duty cycle measurement value.

• ± gain correction value = (1 - ( $V_{F \ 175C}$  -  $V_{F \ 25C}$ ) / (175°C - 25°C) / d $V_{F}$ /d $T_{vj \ spec}$ ) / d $V_{GAIN}$ /bit = (1 - (1.600V - 2.250V) / (175°C - 25°C) / - 0.003867 [V / °C]) / 0.00618 = -19.51

\*  $dV_{GAIN}$ /bit : Gain correction coefficient = 0.00618

• Calculate the gain correction value as an integer. Integerized gain correction value = -20

7) Calculate the write value to the EEPROM from the gain correction value.

- Integerization gain correction value (decimal number) = 20
  - $\Rightarrow$  EEPROM write value = 64 + (-20) = 44(DEC) = 101100(BIN)



# Chapter 10 Parallel Connections

| 1. Current Imbalance at Steady State       | 10-2 |
|--------------------------------------------|------|
| 2. Current Imbalance at Switching          | 10-6 |
| 3. Gate Drive Circuit                      | 10-7 |
| 4. Wiring Example for Parallel Connections | 10-8 |
| 5. Cooler                                  | 10-8 |



This chapter explains the notes when IGBT is connected in parallel.

IGBTs would be connected in parallel in order to enlarge the current capability. In this case, the number of parallel-connected modules has no limitation. However you have to consider some disadvantages of noise or spike voltage increase, which are caused by longer interconnections. You have to pay attention to the following basic notes when connecting IGBT modules in parallel.

- (1) Suppression of current imbalance at steady states
- (2) Suppression of current imbalance at dynamic state of turn-on or turn-on
- (3) Symmetry of gate drive circuit
- (4) Strict observance of specifications such as water flow, water temperature and pressure within each water jacket

### 1. Current Imbalance at Steady State

An on-state current imbalance may be mainly caused by the following two factors:

- (1)  $V_{CE(sat)}$  distribution
- (2) Main circuit wiring resistance distribution

### 1.1 Current imbalance caused by $V_{CE(sat)}$ distribution

As shown in Fig. 10-1, a difference in the output characteristics of two IGBT modules connected in parallel can cause a current imbalance.

The output characteristics of  $Q_1$  and  $Q_2$  shown in Fig. 10-1, can be approximated as follows:

$$V_{\text{CEQ1}} = V_{01} + r_1 \times I_{\text{C1}}$$
$$r_1 = V_1 / (I_{\text{C1}} I_{\text{C2}})$$

$$V_{\text{CEQ2}} = V_{02} + r_2 \times I_{\text{C2}}$$
  
$$r_2 = V_2 / (I_{\text{C1}} I_{\text{C2}})$$

Based on the above, if the  $I_{\text{ctotal}} (=I_{\text{C1}}+I_{\text{C2}})$ collector current is made to flow through the circuit of  $Q_1$  and  $Q_2$  connected in parallel, then the IGBT's collector current becomes the following:

$$I_{C1} = (V_{02} - V_{01} + r_2 \times I_{Ctotal})/(r_1 + r_2)$$
  

$$I_{C2} = (V_{01} - V_{02} + r_1 \times I_{Ctotal})/(r_1 + r_2)$$





For simplicity, assuming  $V_{01}=V_{02}$  in the above equations,  $I_{C1}$  could be  $r_2/r_1$  times larger than  $I_{C2}$ . Also, it can be seen from Fig. 10-1 that r2> r1. This result means that current sharing for  $Q_1$  is larger than  $Q_2$ . In this way,  $V_{CE(sat)}$  becomes a major factor in causing current imbalances. Therefore, in order to ensure the desired current sharing it is necessary to pair modules that have a similar  $V_{CE(sat)}$  which is small variation.  $V_{CE(sat)}$  distribution can be minimized with the use of the same production lot, because influence of fabrication processes is minimized. From this reason, connecting IGBT modules in parallel is recommended with the use of the same production lot.



1.2 Current imbalance by main circuit wiring resistance distribution

The equivalent circuit with the main circuit's wiring resistance is shown in Fig. 10-2. The effect is larger with emitter resistance than with collector resistance, so collector resistance has been omitted here. If there is resistance in the main circuit as shown in Fig. 10-2, then the slope of the IGBT modules' output characteristics will lessen, and the collector current will drop in comparison without emitter resistance. In addition, if  $R_{E1} > R_{E2}$ , then the slope of the  $Q_1$  output characteristics will lessen and if  $I_{C1} < I_{C2}$  then a current sharing imbalance will appear. Moreover, if gate voltage is applied without extra-emitter terminals for parallel-connected IGBTs, the actual gate-emitter voltage drop



Fig. 10-2 The effect of main circuit wiring resistance

 $(V_{GE}=V_G-V_E)$  will be decreased, because an electrical potential difference may appear, depending on how well the collector current can flow through this resistance. So, the IGBTs' output characteristics change and the collector current decline.

Therefore, in order to reduce this imbalance, it is necessary to make the wiring on the emitter side as short and as uniform as possible as well as to apply the gate voltage between gate terminal and additional emitter terminal.

### 1.3 $T_{vi}$ dependence of output characteristics and current imbalance

 $T_{vj}$  dependency of output characteristics deeply affects current imbalance. Here, output characteristic, whose  $V_{CE(sat)}$  is higher and lower with the increase of  $T_{vj}$ , is respectively defined as the positive and negative  $T_{vj}$  dependency. Fig. 10-3 shows the representative output waveform with negative and positive dependency, which are 100A rating. Collector current at the same  $V_{CE}$  is decreased as  $T_{vj}$  is increased in case of positive dependency.

As described 1.1, shared current of IGBT with lower  $V_{CE(sat)}$  is larger at the parallel connecting. Therefore, steady-state loss is larger for IGBT with lower  $V_{CE(sat)}$  than another to increase junction temperature. In this way, in case of positive dependency of



Fig. 10-3 Comparison output characteristics

IGBT, this leads to make shared current between them balanced. On the contrary, in case of negative dependency, current sharing is act as opposite work. Therefore, you need to pay attention to current imbalance in designing the machines or components. Selecting the IGBTs with the positive dependency of output characteristic is recommended when IGBTs are parallel-connected, because IGBTs with positive dependency of output characteristic are relatively easier to use for parallel connection of IGBTs than that with negative one. Please refer to the each series specification for details of  $T_{vi}$  dependency of output characteristic.



### 1.4 Deviation of $V_{CE(sat)}$ and current imbalance rate

Ratio of shared current in parallel connection is called as current imbalance rate, which is determined by deviation of  $V_{CE(sat)}$  and  $T_{vj}$  dependency of output characteristic.

Fig. 10-4 shows the representative relationship between deviation of  $V_{CE(sat)}$  and current imbalance rate. This figure is an example for 2 parallel connections of a series of IGBTs. From this figure, current imbalance rate is found to be larger as deviation of  $V_{CE(sat)}$  is increased. Therefore, it is important to use IGBTs for parallel connection, whose deviation of  $V_{CE(sat)}$  is small, that is,  $\Delta V_{CE(sat)}$  is small.





\*Fig. 10-4 is an example of an IGBT series. In fact, when calculating the available maximum current  $(\Sigma I)$  for parallel connection, refer to the technical data for each IGBT series.

#### 1.5 Derating in parallel connection using many numbers of IGBTs

Derating (Decrease of total current) is needed in consideration with current imbalance in parallel connection of IGBTs.

When n-number of modules are connected in parallel, the following shows the maximum current that can be applied under the worst case conditions where the entire current is concentrated into one module, whose  $V_{CE(sat)}$  is the smallest. Therefore, available maximum current  $\Sigma I$  is expressed by a, which is connected in parallel using 2 modules:

$$\sum_{I=I_{C(max)}} \left[ 1 + (n-1) \frac{\left(1 - \frac{\alpha}{100}\right)}{\left(1 + \frac{\alpha}{100}\right)} \right] \qquad \alpha = \left(\frac{I_{C1}}{I_{C_{(ave)}}} - 1\right) \times 100$$

Here  $I_{C(max)}$  represents the maximum current for a single element,  $\Sigma I$  represents the maximum current in parallel connection. However, to operate in total current  $\Sigma I$ , each module connected in parallel is satisfied with the RBSOA on the specification,  $T_{vjmax}$  for dissipation wattage as well. Note especially that  $T_{vj}$  rise caused by dissipation wattage is various on the condition such as switching frequency, driving condition, cooling condition and snubber condition and so on.

For example, if  $\alpha$ =15%,  $I_{C(max)}$ =200A and n=4, then  $\Sigma I$ =643.4A, and the parallel connected total current should be set so as not to exceed this value. In this case, Derating of 19.6% is needed. In this way, the parallel connected total current is need to be derated for simply calculating n ×  $I_{C(max)}$ .
Fig. 10-5 shows the derating rate for  $\alpha$ =15%. It is found from this figurer that derating rate is increased as the parallel number n is larger. Therefore, derating the total current for parallel connection, depending on the parallel number n. in addition, note that derating rate is various by current imbalance rate.

Because derating rate for this example is a calculated value. It should be determined after confirmation and verification of imbalance current using designed machines.

If you need to change paralleled modules for troubles and/or maintenances, it is recommended that all the paralleled modules be exchanged. In this case, it is recommended that parallel connection be set up using IGBTs with the same production lots.



Fig. 10-5 Relationship between derating rate and parallel number



# 2. Current Imbalance at Switching

Current imbalance at switching may be mainly caused by the following two factors:

- (1) Module characteristics distribution
- (2) Main circuit wiring resistance distribution

#### 2.1 Module characteristics distribution

An IGBTs' switching current imbalance, especially just before turn-off and after turn-on, is mostly determined by an on-state current imbalance, therefore if the on-state current imbalance is controlled simultaneously as shown previously, so will the switching voltage imbalance.

#### 2.2 Main circuit wiring inductance distribution

Inhomogeneous main circuit wiring inductance caused current sharing. Fig. 10-6 shows the equivalent circuit at parallel connection in consideration with main circuit wiring inductance. When  $I_{C1}$  and  $I_{C2}$  flow through IGBT<sub>1</sub> and IGBT<sub>2</sub> respectively, shared currents for them are approximately decided by the ratio of main circuit wiring inductance,  $L_{C1}+L_{E1}$  and  $L_{C2}+L_{E2}$ . So, main circuit wiring is need to be connected as equally as possible in order to relieve current imbalance at switching. However, even if ideal wiring inductance of  $L_{C1}+L_{E1}=L_{C2}+L_{E2}$  is realized, the difference between  $L_{E1}$  and  $L_{E2}$  causes the current imbalance as described bellows.

Inhomogeneous inductance between  $L_{E1}$  and  $L_{E2}$  causes the different inductive voltage originated di/dt at turn-on. This difference between their inductive voltages affects current imbalance more, because it biases to different way to gate to emitter voltage.

If the inductance of the main circuit is large, then the spike voltage at IGBT turn-off will



Fig. 10-6 Equivalent circuit at parallel connection in consideration with main circuit wiring inductance

also be high. Therefore, for the purpose of reducing wiring induction, consider setting the modules that are to be connected in parallel as close together as possible and making the wiring as uniform as possible.



### 3. Gate Drive Circuit

It would be worried that duration until switching (turn-off or turn-on) is varied by the delay time of gate driving unit (GDU), when each gate of parallel-connected modules is driven by each GDU, separately independent on the number of modules. Therefore, it is recommended that all the gates are driven by just only a GDU, when connecting modules in parallel. This can lead the decrease of deviation for different duration until switching.

At the same time, connect gate resistances between gate terminal of each module and a



Fig. 10-7 wiring gate drive unit

GDU so as to avoid the gate voltage oscillation caused by coupling gate wiring inductance with input capacitance of IGBT as shown in Fig. 10-7.

As stated previously, if the drive circuit's emitter wiring is connected in a different position from the main circuit, then the modules' transient current sharing (especially at turn-on) will become imbalanced, because  $L_{E1}$  is different from  $L_{E2}$  as described in Fig. 10-6.

In general, IGBT modules have an auxiliary emitter terminal for use by drive circuits. By using this terminal, the drive wiring of each module becomes uniform, and transient current imbalances attribute to drive circuit wiring can be controlled. Furthermore, be sure to wind the drive circuit wiring tightly together, and lay it out so that it is as far away from the main circuit as possible in order to avoid mutual induction.



# 4. Wiring Example for Parallel Connections

As described before, pay attention in order to connect the modules in parallel. Fig. 10-8 shows the equivalent circuit with parallel-connected 2in1 modules. From this figure, it is found that all the wiring to parallel-connected IGBTs (IGBT<sub>1</sub> and IGBT<sub>2</sub>) are connected symmetrically. This can realize the better current sharing.



Fig. 10-8 Equivalent circuit with parallel-connected 2in1 modules

## 5. Cooler

This IGBT module has the cooler with the water jacket. Even when IGBT modules are connected in parallel, please adhere strictly to the specifications of water temperature, water flow and pressure within each water jacket and fully confirm that there are no problems with the junction temperature etc. of each IGBT.