Power factor correction IC: FA1B00N
 Power supply design example: $24 \mathrm{~V} / 60 \mathrm{~W}$

Reference Design

1. Overview

This document is a design example of a PFC flyback converter using the power factor correction control IC FA1B00N. The output power is 60W. It can be applied to power supplies for LED lighting.

2. Features of FA1B00N

\checkmark High-precision over current protection: $0.65 \mathrm{~V} \pm 2 \%$
\checkmark Low current consumption by CMOS process
\checkmark Start-up : $300 \mu \mathrm{~A}$ (max.), Operating : 1.2 mA (typ.)
\checkmark Enabled to drive power MOSFET directly
Output peak current, source : 0.5 A , sink: 1 A
\checkmark Under-voltage Lockout, 13 V ON / 9 V OFF

2. Power supply specifications

\checkmark Flyback converter with improved power factor
\checkmark LED load can be directly connected thanks to CV/CC control

Item	Value	Unit
Input voltage range	90 to 264	Vac
Adjustable output voltage range	21 to 28	Vdc
Adjustable output current range	0.1 to 2.5	A
Maximum output power	60	W

4. Circuit diagram

FA1B00N Reference Design

5. Parts list

Component	Item	Value	Parts No.	Maker
T1	Transformer		PQ3220	
NF1, 2	Inductor	$3 \mathrm{~A} / 10 \mathrm{mH}$		
L1	Inductor	3A/210uH		
FB2	Ferrite bead			
C1	Film capacitor	310V/0.22uF	LE224-M	OKAYA
C2	Film capacitor	$310 \mathrm{~V} / 0.1 \mathrm{uF}$	LE104-MX	OKAYA
C3	Film capacitor	310V/0.22uF		
C4, 5, 16	Ceramic capacitor	2200pF	DE1E3KX222MA4BL01	MURATA
C6, 20	Film capacitor	450V/0.22uF	ECWFD2W224J	Panasonic
C7	Film capacitor	630V/0.01uF	ECQE6103KF	Panasonic
C8	Ceramic capacitor	$1 \mathrm{kV} / 680 \mathrm{pF}$	DEHR33A681KA2B	MURATA
C9, 14, 25	Ceramic capacitor	0.1uF		
C10	Ceramic capacitor	0.47uF		
C11	Ceramic capacitor	0.22uF		
C12	Ceramic capacitor	0.01uF		
C13	Ceramic capacitor	2200pF		
C15	Electrolytic capacitor	47uF		
C17	Ceramic capacitor	$1 \mathrm{kV} / 470 \mathrm{pF}$	DEHR33A471KA2B	MURATA
C18, 19	Electrolytic capacitor	35V/2200uF		
C24	Electrolytic capacitor	35V/33uF		
C21	Ceramic capacitor	2.2uF		
C23	Film capacitor	630V/0.1uF	ECQE6104KF	Panasonic
R1, 2	Resistor	$1 \mathrm{M} \Omega$		
R3	Resistor	$100 \mathrm{k} \Omega$		
R4, 18	Resistor	22Ω		
R5, 26, 34	Resistor	$10 \mathrm{k} \Omega$		
R6	Resistor	0.1Ω		
R7, 8	Resistor	$15 \mathrm{k} \Omega$		
R11	Resistor	$180 \mathrm{k} \Omega$		
R9	Resistor	$4.7 \mathrm{k} \Omega$		
R10	Resistor	$36 \mathrm{k} \Omega$		
R12	Resistor	$3.3 \mathrm{k} \Omega$		
R13, 15	Resistor	100Ω		
R14, 36	Resistor	$110 \mathrm{k} \Omega$		
R16	Resistor	15Ω		
R20, 22	Resistor	$2.2 \mathrm{k} \Omega$		
R21	Resistor	$1 \mathrm{k} \Omega$		
R23	Resistor	$1 \mathrm{M} \Omega$		
R24	Resistor	$56 \mathrm{k} \Omega$		
R25	Resistor	$43 \mathrm{k} \Omega$		
R27, 33	Resistor	$27 \mathrm{k} \Omega$		
R30	Resistor	$3.3 \mathrm{M} \Omega$		
R32	Resistor	$2.4 \mathrm{k} \Omega$		
R19	Resistor	0.02Ω		
R17	Resistor	$82 \mathrm{k} \Omega$		
RV1	Variable resistor	$1 \mathrm{k} \Omega$		
RV2	Variable resistor	$10 \mathrm{k} \Omega$		
D1	Diode	1000V/0.5A		
D2, 3	Diode	200V/1A		
D4	Diode	40V/1A		
ZD1	Zener diode	200mW/8.2V		
ZD3	Zener diode	$200 \mathrm{~mW} / 20 \mathrm{~V}$		
DS1	Bridge Diode	600V/4A		
DS2	Diode	200V/30A	YG878C20R	Fuji
TR1	MOSFET	700V/11A	FMV11N70E	Fuji
IC1	IC		FA1B00N	Fuji
IC2	IC		NJM2146BM	JRC
PC1	Photo coupler			

6. Transformer (T1)

Item	Value	Note
Core size	PQ 32/20	
Inductance	$260 \mu \mathrm{H}$	1 pin to 3 pin
NP1	24 turn	start 3 pin end 1 pin
NP2	4 turn	start 5 pin end 6 pin
NS1	5 turn	start 10, 11, 12 pin end 7, 8, 9 pin

Wiring diagram

7. CV and CC control output characteristics

The output of the reference board is controlled as CV or CC depending on the connected load.
\checkmark When a resistive load is connected, the output constant voltage is adjusted by RV1 and the output current limit is adjusted by RV2.
\checkmark When the LED load is connected, the output constant current is adjusted by RV2, and the output voltage limit is adjusted by RV1.

Output characteristics of LED load and electronic load

Output voltage and Output current adjustment point

8. Electrical characteristics

The input / output characteristics of the reference board are as follows.

Innovating Energy Technology
FA1B00N Reference Design

9. Waveforms (AC input current)

110Vac Full load ($\fallingdotseq 60 \mathrm{~W}$)

220Vac Full Ioad ($\fallingdotseq 60 \mathrm{~W}$)

Fuji Electric
FA1B00N Reference Design
110Vac Half load ($\fallingdotseq 30 \mathrm{~W}$) Switching wave form

Ch1: Vds 100V/div, Ch2: OUT 20V/div, Ch3: Vcin 200V/div, Ch4: lin 1A/div
\rightarrow 110Vac Full load ($\fallingdotseq 60 \mathrm{~W}$) Switching wave form

Ch1: Vds 100V/div, Ch2: OUT 20V/div, Ch3: Vcin 200V/div, Ch4: lin 1A/div
220Vac Half load (\fallingdotseq 30W) Switching wave form

Ch1: Vds 100V/div, Ch2: OUT 20V/div, Ch3: Vcin 500V/div, Ch4: lin 0.5A/div
220Vac Full load (\fallingdotseq 60W) Switching wave form

Ch1: Vds 100V/div, Ch2: OUT 20V/div, Ch3: Vcin 500V/div, Ch4: lin 1A/div

10. Parts settings around the IC

10-1. FB pin

When applying FA1B00N to PFC flyback converter, use the COMP pin, which is the output of the internal error amplifier, as the feedback signal input. The FB pin is applied a voltage lower than the reference voltage Vfb of the error amplifier. On the other hand, the FB pin has a built-in short circuit protection, and it is necessary to set the FB pin voltage above the threshold voltage Vthfb $(0.55 \mathrm{~V})$ when Vcc is the "OUT pin stop VCC pin threshold voltage" Voff. Also, during normal operation, it is recommended to use the FB pin above the "maximum oscillation frequency operating voltage" Vfbmax. When using for PFC flyback converter, the static overvoltage protection and dynamic overvoltage protection built into the FB pin cannot be used.

```
Voff: 8V(MIN.)
- VCC: 19V
- Ipullup: -1.4\muA(MAX.)
* Vthfb:0.55V(MAX.)
\ Vfbmax: 1.3V(MAX.)
R R11: 180k\Omega
- Vfb: 2.475V(MIN.)
```


Calculate the resistance value of R7 above Vthfb.

$$
0.55 \mathrm{~V} \div((8 \mathrm{~V}-0.55 \mathrm{~V}) \div 180 \mathrm{k} \Omega+1.4 \mu \mathrm{~A})=12.9 \mathrm{k} \Omega
$$

$\underline{\mathrm{R} 7>12.9 \mathrm{k} \Omega}$
Calculate the resistance value of $R 7$ that exceeds Vfbmax.

$$
1.3 \mathrm{~V} \div((19 \mathrm{~V}-1.3 \mathrm{~V}) \div 180 \mathrm{k} \Omega+1.4 \mu \mathrm{~A})=13.1 \mathrm{k} \Omega
$$

$\underline{\mathrm{R}} 7>13.1 \mathrm{k} \Omega$
Calculate the resistance value of R 7 that is less than Vfb .

$$
2.475 \mathrm{~V} \div((19 \mathrm{~V}-2.475 \mathrm{~V}) \div 180 \mathrm{k} \Omega+2.6 \mu \mathrm{~A})=27.0 \mathrm{k} \Omega
$$

$\underline{\mathrm{R} 7<27.0 \mathrm{k} \Omega}$
From the above calculation results, the resistance value of $R 7$ is set to $15 \mathrm{k} \Omega$. C9 is connected with a $0.01 \mu \mathrm{~F}$ ceramic capacitor to prevent malfunction due to noise.

10-2. COMP pin

As for the COMP pin, connect the collector pin of the photocoupler for feedback from the secondary side. Connect a capacitor so that the COMP pin voltage will be DC voltage. A CR filter may be added for stable operation. Please check the actual operation. The source current of the COMP pin is as low as -30uA, and R8 may be connected and adjusted for the purpose of suppressing over response to the secondary output. When connecting R8, select the resistor value so that the COMP pin voltage could be lowered below the "OUT pin stop COMP pin threshold voltage" Vthcomp.

- R9: $4.7 \mathrm{k} \Omega$

COMP pin circuit

- R8: $15 \mathrm{k} \Omega$
-C10: $0.47 \mu \mathrm{~F}$
- C11: $0.22 \mu \mathrm{~F}$

Please decide the above value after confirming the actual operation.

10-3. RT pin

Set the resistor value of the RT pin to be larger than the on-width required for the circuit. Each parameter used in the calculation is as follows.

- Lp: $260 \mu \mathrm{H}$
- Pout: 60W(target)
- Vac(min): 90Vrms
- $\eta: 0.85$
- NP1:24Turn
- NS1:5Turn

RT pin circuit

Maximum on-range(Tonmax) vs. RT resistance(Rrt)

Calculate on-time ton from the above ILp.

$$
t_{\text {on }}=\frac{260 \mu \mathrm{H} \times 4.67 \mathrm{~A}}{90 \mathrm{~V} \times \sqrt{2}}=9.54 \mu \mathrm{~s}
$$

$$
\mathrm{f}_{\text {swmin }}=\frac{0.475}{9.54 \mu \mathrm{~s}}=49.8 \mathrm{kHz}
$$

From the calculation results and the graph of Tonmax and Rrt resistance in the data sheet, R10 is set to $36 \mathrm{k} \Omega$. C12 is connected with a 0.01 uF ceramic capacitor to prevent malfunction due to noise. Tonmax is the OUT pin width when the COMP pin voltage Vcomp is 4.2 V . If Tonmax is set too large (R10 is made large), the fluctuation of the output width becomes large, and the power factor and THD may deteriorate. Select the resistance value after fully checking the actual operation.

10-4. CS pin

The surge current due to drive current of MOSFET_TR1 or the discharge current of the parasitic capacitance of the circuit flow through the current sensing resistor Rs. At the CS pin, connect a CR filter to prevent the OUT pin pulse from stopping due to false detection of these currents. After setting the cutoff frequency of the CR filter to be 1 to 2 MHz , check the actual operation and adjust.

```
R13:47\Omega
C13: 2200pF
```

Calculate the cutoff frequency.

$$
1 \div(2 \times \pi \times 100 \Omega \times 2200 \mathrm{pF})=1.54 \mathrm{MHz}
$$

In this reference design, R13 is set to 100Ω to enhance the filter function. Select the value after confirming the actual operation.

10-5. ZCD pin

The ZCD pin uses the auxiliary winding voltage to detect the timing when the transformer energy is reset and the secondary winding current becomes zero. The recommended current value of the internal Zener diode at the ZCD pin is $\pm 1.5 \mathrm{~mA}$. The current flowing through the Zener diode is limited by the resistor R17. The parameters used in the calculation are:

```
- NP1:24 turn
* NP2: 4 turn
- NS1:5 turn
- Vac(max): 264V
* Vout: 24V
Vih: 5.6V(MAX.)
* Vil: -0.6V(MAX.)
```

Calculate the ZCD terminal voltage plus side.

$$
(24 \mathrm{~V} \times 4 / 5-5.6 \mathrm{~V}) \div 1.5 \mathrm{~mA}<\mathrm{R} 17 \quad \underline{\mathrm{R} 17}>9.1 \mathrm{k} \Omega
$$

Calculate the ZCD terminal voltage minus side.

$$
(-0.6 \mathrm{~V}+\sqrt{2} \times 264 \mathrm{~V} \times 4 / 24) \div 1.5 \mathrm{~mA}<\mathrm{R} 17
$$

$$
\underline{\mathrm{R} 17>41.1 \mathrm{k} \Omega}
$$

From the calculation results, $R 17$ should be set to $41.1 \mathrm{k} \Omega$ or higher. In this reference design, $82 \mathrm{k} \Omega$ is selected in consideration of the resistance value adjustment of R17. When determining the resistance value, make adjustments while checking the MOSFET turn-on timing and ZCD pin waveform in actual operation. The ZCD pin - GND pin capacitor Czcd is not mounted.

10-6. OUT pin

The OUT pin can directly drive the power MOSFET, but it must be used within the ratings of the source and sink current of the OUT pin. Make adjustments according to the circuit actually used and the power MOSFET. As a guide, set the lower limit of the resistance value. The parameters used in the calculation are:

- Vol:1.2V(typ.), Isink=200mA
- Voh: 10V(MAX.), Isource=50mA

OUT pin circuit

- Vcc: 12V (measurement conditions)
- VCC: 19V (VCC pin voltage during use)
- lo: 1000mA(sink)
- lo: 500 mA (source)

Calculate the gate resistance Rg required when the power MOSFET is turned off, taking into account the internal resistance Rsink of the OUT pin.

$$
19 \mathrm{~V} \div(1.2 \mathrm{~V} \div 200 \mathrm{~mA}+\mathrm{Rg})<1000 \mathrm{~mA} \quad \underline{\mathrm{Rg}}>18.8 \Omega
$$

Calculate the OUT pin current at turn on, taking into account the internal resistance Rsource of the OUT pin when the current is source.

$$
19 \mathrm{~V} \div((12 \mathrm{~V}-10 \mathrm{~V}) \div 50 \mathrm{~mA})=475 \mathrm{~mA}
$$

From the calculation results, we set 22Ω for sink (off) and $22 \Omega+100 \Omega$ for source (on). When the VCC voltage is 19 V , the output current lo does not exceed 500 mA due to the voltage drop inside the IC, but when connecting to a MOSFET, be sure to connect a resistor. Adjust the on / off timing in actual operation to determine the resistance value. If the VCC voltage fluctuates greatly, set the gate resistance at the maximum VCC voltage.

10－7．VCC pin

Auxiliary winding voltage is smoothed and supplied to the VCC pin．Since there is no auxiliary winding voltage when the IC is started，start it by connecting a start up resistor．The parameters used to calculate the start up resistor are：
－ $\operatorname{Vac}(\mathrm{min}): 90 \mathrm{~V}$
－Vac（max）：264V
－VCC：19V
－Von（MAX．）：14V
－Istart（MAX．）：300uA

The startup current Istart is consumed when the IC starts．Therefore，the start

VCC端子回路

 resistor R36＋R14 must be able to flow at least Istart．

$$
(90 \mathrm{~V} \times \sqrt{2}-14 \mathrm{~V}) \div 300 \mu \mathrm{~A}>\mathrm{R} 36+\mathrm{R} 14
$$

$$
\underline{\mathrm{R} 36+\mathrm{R} 14<378 \mathrm{k} \Omega}
$$

During operation，a voltage is always applied to the start up resistor．It is necessary to consider the power loss due to the start up resistance．The start up resistor is calculated when this loss is assumed below 0.6 W ．

$$
(264 \mathrm{~V} \times \sqrt{2}-19 \mathrm{~V})^{2} \div 0.6 \mathrm{~W}<\mathrm{R} 36+\mathrm{R} 14 \quad \underline{\mathrm{R} 36+\mathrm{R} 14>209 \mathrm{k} \Omega}
$$

In this reference design，the starting resistance is set to $220 \mathrm{k} \Omega$ in order to shorten the starting time．The time it takes for the IC to start operating can be roughly calculated from the starting resistance and the capacitor．

$$
47 \mu \mathrm{~F} \times 220 \mathrm{k} \Omega \times \ln \left(\frac{90 \times \sqrt{2}}{90 \times \sqrt{2}-13}\right)=1.1 \mathrm{sec}
$$

Notice

1. The contents of this note (Product Specification, Characteristics, Data, Materials, and Structure etc.) were prepared in Mar, 2021. The contents will subject to change without notice due to product specification change or some other reasons. In case of using the products stated in this document, the latest product specification shall be provided and the data shall be checked.
2. The application examples in this note show the typical examples of using Fuji products and this note shall neither assure to enforce the industrial property including some other rights nor grant the license.
3. Fuji Electric Co., Ltd. is always enhancing the product quality and reliability. However, semiconductor products may get out of order in a certain probability. Measures for ensuring safety, such as redundant design, spreading fire protection design, malfunction protection design shall be taken, so that Fuji Electric semiconductor product may not cause physical injury, property damage by fire and social damage as a result.
4. Products described in this note are manufactured and intended to be used in the following electronic devices and electric devices in which ordinary reliability is required:

- Computer - OA equipment - Communication equipment (Pin) - Measuring equipment
- Machine tool - Audio Visual equipment - Home appliance - Personal equipment
- Industrial robot etc.

5. Customers who are going to use our products in the following high reliable equipments shall contact us surely and obtain our consent in advance. In case when our products are used in the following equipment, suitable measures for keeping safety such as a back-up-system for malfunction of the equipment shall be taken even if Fuji Electric semiconductor products break down:

- Transportation equipment (in-vehicle, in-ship etc.) - Communication equipment for trunk line
- Traffic signal equipment - Gas leak detector and gas shutoff equipment
- Disaster prevention/Security equipment - Various equipment for the safety.

6. Products described in this note shall not be used in the following equipments that require extremely high reliability:

- Space equipment - Aircraft equipment - Atomic energy control equipment
- Undersea communication equipment - Medical equipment.

7. When reprinting or copying all or a part of this note, our company's acceptance in writing shall be obtained.
8. If obscure parts are found in the contents of this note, contact Fuji Electric Co., Ltd. or a sales agent before using our products. Fuji Electric Co., Ltd. and its sales agents shall not be liable for any damage that is caused by a customer who does not follow the instructions in this cautionary statement.

- The contents will subject to change without notice due to product specification change etc.
- Application examples and component in this sheet is for the purpose of assisting in the design. Therefore, This sheet has not been made in consideration of the margin.
- Before using, Please design in consideration of the parts variation and use condition.

