To cope with the environmental issues such as global warming, energy saving in the transportation equipment has been proceeded. In railcars, the energy losses in power electronic equipment such as variable voltage variable frequency (VVVF) inverters for propulsion and auxiliary power supplies have been steadily reduced. In this situation, Fuji Electric has developed a compact and lighter VVVF inverter applicable to urban and commuter railways using own developed low-loss semiconductor devices.

The inverter has employed SiC hybrid modules, combining silicon carbide-Schottky barrier diodes (SiC-SBDs) and insulated gate bipolar transistors (IGBTs), and significantly reducing the inverter losses. In addition, the speed sensorless vector control improves the system reliability by eliminating the speed sensor.

1. Features

The main features of this product are as follows:
(a) Fuji Electric’s SiC hybrid modules with 3.3 kV and 1,200 A ratings have significantly reduced the inverter losses.
(b) The highly efficient fin structure of the cooling system, utilizing the airflow in traveling, has eliminated the heat pipes.
(c) Speed sensorless vector control has been developed to control a motor without a speed sensor by estimating the actual speed based on the voltage and current.

With these technologies, the product achieved a 64% volume reduction and a 45% mass reduction from the conventional product.

2. Commercial Application

This product was applied to propulsion systems for the renovated 5000 Series railcars of Sanyo Electric Railway Co., Ltd. Figure 1 shows the appearance of the renovated 5000 Series railcars, and Table 1 shows the major specifications. Figure 2 shows the train consist (car formation) and the details of the renovation. Out of six-car-set, No. 1 and No. 2 cars (Hanshin Umeda side), previously adopting the superimposed field excitation control, were renovated. Car No. 1 was converted to a trailer, and this VVVF inverter was

*Power Electronics Systems Industry Business Group, Fuji Electric Co., Ltd.

Table 1 Specifications of Renovated 5000 Series Railcars

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric system</td>
<td>1,500-V DC overhead wire system</td>
</tr>
<tr>
<td>Railcar performance</td>
<td></td>
</tr>
<tr>
<td>Acceleration</td>
<td>2.8 km/h/s</td>
</tr>
<tr>
<td>Deceleration</td>
<td>Service: 4.0 km/h/s max. Electrical braking: 3.2 km/h/s</td>
</tr>
<tr>
<td>Maximum speed</td>
<td>110 km/h</td>
</tr>
<tr>
<td>Control method</td>
<td>Speed sensorless vector control 1C2M × 2 group 2-level VVVF inverter</td>
</tr>
<tr>
<td>Inverter cooling system</td>
<td>Traveling airflow cooling system</td>
</tr>
<tr>
<td>Traction motor</td>
<td>Induction motor, 180 kW rating, 4 poles, 1,100 V, 120 A</td>
</tr>
<tr>
<td>Braking method</td>
<td>Electrically controlled pneumatic brake combined with regenerative brake</td>
</tr>
</tbody>
</table>

Fig.1 Renovated 5000 Series railcars

Fig.2 Train consist (car formation) and renovation
mounted on Car No. 2.

Figure 3 shows the acceleration and deceleration data from the main track test run. Figure 3 shows that the estimated speed followed the actual speed, and the testing railcars performed good acceleration (at powering) to the maximum operating speed of 110 km/h and deceleration (at braking).

3. Background Technology

3.1 Own developed SiC hybrid module

Figure 4 shows the appearance of the SiC hybrid module mounted on the VVVF inverter. Figure 5 compares the energy losses between the SiC hybrid module and the conventional Si-IGBT module. In addition to the energy losses reduced in the semiconductor devices, we have adopted the traveling airflow cooling system to cool the radiator of the inverter circuit with the traveling airflow, and reduced the volume and weight of the VVVF inverter by 64% and 45%, respectively.

Figure 6 shows the appearance of the VVVF inverter with a traveling airflow cooling system.

Fig.3 Acceleration and deceleration data from main track test run

3.2 Speed sensorless vector control

Figure 7 shows a block diagram of the speed sensorless vector control. This control improves the system reliability through
- Estimating the actual speed by the flux estimation from the voltage and current, and
- Controlling a motor speed without using an external speed sensor.
Revenue Service Start
October 2018

Product Inquiries
Transportation Systems Department,
Social Solutions Division,
Power Electronics Systems Industry Business
Group, Fuji Electric Co., Ltd.
Tel: +81 (3) 5435-7188

Fig.7 Block diagram of speed sensorless vector control
Fuji Electric

Innovating Energy Technology

* All brand names and product names in this journal might be trademarks or registered trademarks of their respective companies.