Chapter 4

Troubleshooting

This section explains IGBT troubleshooting and failure analysis.

1 Troubleshooting

Incorrect wiring or mounting of an IGBT in an inverter circuit could cause module destruction. Because a module could be destroyed in many different ways, once the failure has occurred, it is important to first determine the cause of the problem, and then to take the necessary corrective action. Table 4-1, illustrates how to determine a module’s failure modes as well as the original causes of the trouble by observing irregularities outside of the device. First of all, compare the device estimated failure mode to the table when an IGBT is destroyed. Fig.4-1(a-f) was prepared as a detailed guide (analysis chart), and should be used to help investigate the destruction when you cannot determine the cause by using Table 4-1. Typical failure modes and troubleshooting are described in section 4-3 and can be used to assist in finding the cause.
Table 4-1 Causes of device failure modes

<table>
<thead>
<tr>
<th>External abnormalities</th>
<th>Cause</th>
<th>Device failure mode</th>
<th>Further checkpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short circuit</td>
<td>Arm short circuit</td>
<td>Short circuit destruction of one element</td>
<td>Outside SCOSA</td>
</tr>
<tr>
<td></td>
<td>Series arm short circuit</td>
<td>Gate or logic Circuit malfunction</td>
<td>Noise, etc.</td>
</tr>
<tr>
<td></td>
<td>dv/dt</td>
<td>Insufficient gate reverse bias. Gate wiring too long</td>
<td>Overheating</td>
</tr>
<tr>
<td></td>
<td>Dead time too short</td>
<td>Insufficient gate reverse bias. Date time setting error</td>
<td>Overheating</td>
</tr>
<tr>
<td>Output short circuit</td>
<td>Miss wiring, abnormal wire contact, or load short circuit.</td>
<td>Outside SCOSA</td>
<td>Check conditions at time of failure.</td>
</tr>
<tr>
<td>Ground short</td>
<td>Miss wiring, abnormal wire contact</td>
<td>Outside SCOSA</td>
<td>Check that device ruggedness and protection circuit match. Check wiring condition.</td>
</tr>
<tr>
<td>Overload</td>
<td>Logic circuit malfunction</td>
<td>Overheating</td>
<td>Check logic circuit. Check that overload current and gate voltage match. If necessary, adjust overcurrent protection level.</td>
</tr>
<tr>
<td></td>
<td>Overcurrent protection circuit setting error</td>
<td>Overheating</td>
<td>Check logic circuit. Check that turn-off operation (loci) and RBSOA match. If necessary, adjust overcurrent protection level.</td>
</tr>
<tr>
<td>Over Voltage</td>
<td>Excessive input voltage</td>
<td>Insufficient overvoltage protection</td>
<td>C-E Overvoltage</td>
</tr>
<tr>
<td></td>
<td>Excessive spike voltage</td>
<td>Switching turn-off</td>
<td>Outside RBSOA</td>
</tr>
<tr>
<td></td>
<td>FWD commutation</td>
<td>High di/dt resulting</td>
<td>C-E Overvoltage</td>
</tr>
<tr>
<td></td>
<td>Drive supply voltage drop</td>
<td>DC-Dc converter malfunction</td>
<td>Overheating</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drive voltage rise is too slow.</td>
<td>Overheating</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disconnected wire</td>
<td>Overheating</td>
</tr>
</tbody>
</table>
Chapter 4 Troubleshooting

<table>
<thead>
<tr>
<th>External abnormalities</th>
<th>Cause</th>
<th>Device failure mode</th>
<th>Further checkpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate overvoltage</td>
<td>Static electricity</td>
<td>Avalanche</td>
<td>Check operating conditions (anti-static protection). Check gate voltage.</td>
</tr>
<tr>
<td></td>
<td>Spike voltage due to excessive length of gate wiring</td>
<td>Overvoltage</td>
<td></td>
</tr>
<tr>
<td>Overheating</td>
<td>Overheating</td>
<td>Overheating</td>
<td>Check cooling conditions. Check logic circuit. Logic circuit malfunction</td>
</tr>
<tr>
<td></td>
<td>Loose terminal screw or cooling fan shut down</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal runaway</td>
<td>Logic circuit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Logic circuit malfunction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress</td>
<td>Stress</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vibration</td>
<td>Stress from</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>external wiring</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vibration of</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mounting parts</td>
<td></td>
</tr>
<tr>
<td>Reliability (Life time)</td>
<td>The application condition exceeds the reliability of the module.</td>
<td></td>
<td>Destruction is different in each case. Refer to Fig.4-1 (a-f).</td>
</tr>
</tbody>
</table>

IGBT module destruction

- IGBT chip destruction
- Outside RBSOA
 - A
 - Gate over voltage
 - B
 - Junction overheating
 - C
 - FWD chip destruction
 - D
 - Stress destruction
 - E

Fig.4-1 (a) IGBT module failure analysis

A. Outside RBSOA

- Excessive cut-off current
- Excessive turn-on current
- Over current protection failure
- Over voltage
 - Excessive supply voltage
 - Motor regeneration
 - Overvoltage protection circuit failure
 - Insufficient snubber discharge
 - Excessive surge voltage at FWD reverse recovery
 - Faulty snubber circuit
 - Faulty snubber resistor
 - Disconnected snubber resistor
 - Faulty gate drive circuit
 - Faulty load
 - Faulty load
 - Faulty input voltage
 - Faulty control PCB
 - Faulty regeneration circuit

Origin of failure

- Faulty control PCB
- Faulty control PCB
- Faulty gate drive circuit
- Faulty load
- Faulty control PCB
- Faulty load
- Faulty input voltage
- Faulty control PCB
- Faulty regeneration circuit
- Faulty control PCB
- Disconnected snubber resistor
- Faulty gate drive circuit

Fig.4-1 (b) Mode A: Outside RBSOA
Chapter 4 Troubleshooting

B: Gate overvoltage

- Origin of failure
 - Manufacturing fault
 - Gate wiring too long

- Gate overvoltage
 - Static electricity
 - Still no antistatic protection
 - Manufacturing fault

- Gate overvoltage
 - Spike voltage
 - Oscillation
 - Gate wiring too long

Fig.4-1 (c) Mode B: Gate overvoltage

C: Junction overheating

- Insufficient forward bias gate voltage

- Over current protection circuit failure
 - Gate drive circuit malfunction
 - Insufficient dead time

- Series arm short circuit
 - Faulty gate drive circuit
 - Faulty control PCB

- Output short circuit
 - Ground fault

- Overload
 - Collector current increase
 - Over current
 - Over current protection circuit failure

- Switching loss increase
 - Insufficient forward bias gate voltage

- Gate drive signal malfunction

- Gate drive circuit malfunction

- Insufficient forward bias gate voltage

- Gate resistance increase

- Reverse bias gate voltage decrease

- Series arm short circuit

- Insufficient dead time

- Over current protection circuit failure

- Gate drive circuit malfunction

- Insufficient dead time

- Ground fault

- Output short circuit

- Overload

- Faulty gate drive circuit

- Faulty control PCB

- Faulty gate drive circuit

- Faulty control PCB

- Faulty snubber circuit

- Faulty gate drive circuit

- Faulty control PCB

- Faulty gate drive circuit

- Faulty gate drive circuit

- Faulty control PCB

- Faulty control PCB

- Faulty control PCB

- Faulty control PCB

- Insufficient mounting torque

- Critical heat sink warpage

- Insufficient coverage of thermal compound volume

- Insufficient dust filtration

- Faulty cooling fan

- Faulty cooling system

- Faulty temperature maintenance equipment

Fig.4-1 (d) Mode C: Junction overheating
D: FWD destruction

Excessive junction temperature rise

Static loss increase

Origin of failure

Power factor drop
Power factor drop
Faulty PCB

Overload

Switch increase

Switching increase

dv/dt malfunction
Gate drive signal malfunction
Increase in carrier frequency

Faulty snubber circuit
Gate drive circuit malfunction
Faulty PCB

Excessive junction temperature rise

Faulty PCB

Faulty PCB

Switch loss increase

Faulty PCB

Gate drive circuit malfunction

Faulty PCB

Faulty PCB

Excessive junction temperature rise

Insufficient mounting torque

Bad heat sink warping

Insufficient adjustment of thermal compound volume

Insufficient dust prevention

Faulty cooling fan

Faulty cooling system

Faulty temperature maintenance equipment

Rise in case temperature

Contact thermal resistance increase

Device mounting force insufficient

Excessive heat sink warping

Insufficient heat sink warping

Insufficient adjustment of thermal compound volume

Heat sink obstruction

Insufficient dust prevention

Cooling fan operation slow or stopped

Faulty cooling fan

Abnormal rise in ambient temperature

Temperature maintenance equipment failure

Faulty temperature maintenance equipment

Overvoltage

Excessive reverse recovery voltage

di/dt increase at turn-on

Forward bias gate voltage increase

Gate drop

Gate signal interruptions resulting from noise interference

Faulty snubber circuit

Gate drive circuit malfunction

Gate drive circuit malfunction

Gate drive circuit malfunction

Faulty PCB

Excessive surge voltage at IGBT turn-off

A (Fig. 4-1 (b))

Faulty charging circuit

Over current

Over charging current of rectifier

Faulty charging circuit

Fig.4-1 (e) Mode D: FWD destruction
Fig.4-1 (f) Mode E: Reliability issues or mishandling destruction
2 IGBT test procedures

An IGBT module that has been found to be faulty can be checked by testing it on a transistor characteristics measuring device called a "transistor curve tracer (CT)."

1. Leakage current between gate and emitter, and threshold voltage between gate and emitter.
2. Short circuit, breakdown voltage, open circuit between collector and emitter (Short gate and emitter.)

If a CT is not available, other test equipment, such as a Volt-ohm multi-meter that is capable of measuring voltage/resistance and so forth to determine a failure, can be used to help diagnose the destruction.

2.1 G-E check

As shown in Fig.4-2, measure the leakage current or resistance between G and E, with C and E shorted to each other. (Do not apply a voltage in excess of 20V between G and E). If the V-ohm multi-meter is used, verify that the internal battery voltage is not higher than 20V.)

If the product is normal, the leakage current reading should be on the order of several hundred nano-Amps. (If the V-ohm multi-meter is used, the resistance reading would range from several tens MΩ to infinity. In other situations, the device has most likely broken down. (Generally, device destruction is represented by a short between G and E.)

2.2 C-E check

As shown in Fig.4-3, measure the leakage current or resistance between C and E, with a short between G and E. Be sure to connect the collector to (+) and the emitter to (-). Reverse connections will energize the FWD, causing C and E to be shorted to each other.

If the module is normal, the leakage current reading should read below the ICES maximum specified in the datasheet. (If the V-ohm multi-meter is used, the resistance reading would range from several ten MΩ to infinity. In other situations, the device has most likely broken down. (Generally, device destruction is represented by a short between C and E.)

Note:

Never perform withstand voltage measurement between the collector and gate. It might cause the dielectric destruction of the oxide layer by applying excess voltage.
3 Typical trouble and troubleshooting

3.1 Energizing a main circuit voltage when the circuit between G and E is open

If a voltage is applied to the main circuit with the circuit between the gate and emitter open, the IGBT would be turned on autonomously, triggering large current flow to cause device destruction. Be sure to drive the device with a signal placed between G and E. This phenomenon occurs when the gate-emitter capacitance is charged through feedback capacitance C_{res} of the IGBT at the application of a main voltage with the circuit between G and E open, causing the IGBT to be turned on.

If the signal line is switched using a mechanical switch, such as a rotary switch, during product acceptance testing or on similar occasions, the circuit may open instantaneously between G and E at the time of switching could cause device destruction (the phenomenon described above).

When the mechanical switch chatters, a similar period is generated, leading to device destruction. To guard against such risks, be sure to discharge the main circuit voltage (between C and E) to 0V before switching the gate signal. When performing characteristics testing, such as acceptance testing, on a product comprising multiple devices (two or more), keep the gate and emitter shorted to each other on the devices other than the one under test.

Fig.4-4 shows an example of an on-voltage measurement circuit. The measurement sequence is described with reference to this measurement circuit. First, turn off the gate drive unit (GDU) ($V_{GE} = 0V$) and then turn on SW$_1$ to apply a voltage between C and E. Next, apply a predefined forward bias voltage between G and E from the GDU to energize the IGBT for measuring the on voltage. Lastly, turn off the gate circuit and then SW$_1$. Such sequencing will allow for safe measurement of device characteristics without risking destruction.

![Fig. 4-4 On voltage measurement circuit](image)

DUT: IGBT under test, **GDU**: Gate drive unit, **G**: Variable AC power supply, **CRO**: Oscilloscope, **R$_1$, R$_2$**: Protective resistance, **R$_3$**: Current measurement non-inductive resistor, **D$_1$, D$_2$**: Diode, **SW$_1$**: Switch

3.2 Destruction caused by mechanical stress

If the terminals or pins are subjected to stress from a large external force or vibration, the internal electrical wiring of the product could be destroyed. Be careful by not mounting the device in an application that might be strenuous, minimize the chances of such destruction by reducing stress.

Fig.4-5 shows an example of mounting a gate drive printed circuit board (PCB) on top of the IGBT module.

As shown in (1), if the gate drive printed circuit board is mounted without clamping the PCB, the any PCB vibration could cause flexing possibly, stressing the module pins causing pin damage or internal electrical wiring damage. As shown in (2), the PCB needs to be clamped to prevent this problem. When taking this corrective action, use a dedicated fixing material having sufficient strength.
3.3 Accidental turn-on of the IGBT caused by insufficient reverse bias gate voltage \(-V_{GE}\)

Insufficient reverse bias gate voltage \(-V_{GE}\) could cause both IGBTs in the upper and lower arms to be turned on after accidental turn-on, resulting in a short-circuit current flowing between them. A surge voltage or loss arising when this current is turned off may result in product destruction. In designing a circuit, make sure that no short-circuit currents are generated as a result of a short circuit between the upper and lower arms (recommended \(-V_{GE} = 15V\)).

The occurrence of this phenomenon is described below with reference to Figs. 4-7 and 4-8.

An IGBT with \(-V_{GE}\) applied is shown in Fig. 4-7. Assume that an IGBT is connected in series on the opposing arm as well, though it is not depicted. When the IGBT on the opposing arm is turned on, the FWD shown in Fig.4-7 recovers in reverse direction. Fig.4-8 shows the schematic waveform of \(V_{CE}\), \(I_{CG}\) and \(V_{GE}\) at reverse recovery. As shown in Fig.4-8, when voltage sustained by FWD is lowered at reverse recovery, \(dv/dt\) is generated by raising the voltage between C and E at this time. This \(dv/dt\) causes current \(I_{CG}\) to flow through feedback resistance \(Cres\) between C and G and through gate resistance \(R_G\) as shown in Fig.4-7. This \(I_{CG}\) induces a potential difference of \(\Delta V = R_G \times I_{CG}\) across the \(R_G\), pushing up the \(V_{GE}\) towards the + side.
as shown in Fig.4-8. If the peak voltage of V_{GE} exceeds $V_{GE \ (th)}$, the IGBT is turned on, introducing short-circuit current flow through the upper and lower arms. Conversely, no short-circuit current will flow through the upper and lower arms unless the peak voltage of V_{GE} exceeds $V_{GE \ (th)}$. This problem can be suppressed by applying a sufficient reverse bias voltage ($-V_{GE}$). Because the required value of V_{GE} depends on the drive circuit used, gate wiring, R_g and the like, check for the presence or absence of a short-circuit current flow through the upper and lower arms when designing a circuit.

Fig 4-9 shows an example of the method of checking for the presence or absence of the short-circuit current flow through the upper and lower arms. First, open the inverter output terminals (U, V, W) (that is, leave them under no load) as shown. Next, activate the inverter to drive the individual IGBTs. The presence or absence of the short-circuit current flow through the upper and lower arms can be determined by detecting current flow from the power line as shown. If a sufficient reverse bias current is applied, a very weak pulse current (about 5% of the rated current) that charges the device junction capacitance will be detected. With insufficient reverse bias voltage $-V_{GE}$, this current increases.

To ensure correct determination, we recommend first detecting this current with the applied voltage $-V_{GE} = -15V$. This eliminates the risk of false firings. Then measure the same current with the predefined value of $-V_{GE}$. If the two measurements of the current are equal, no false turn-on has occurred. In case that false turn-on is observed, a recommended solution is to increase the reverse bias voltage $-V_{GE}$ until the short-circuit current is eliminated or inserting a capacitance (C_{GE}) about half the C_{ies} value between G and E near the module terminals. Verify the applicability of the method of the C_{GE} insertion beforehand, because it will significantly affect the switching time and switching losses. If you would like to have the similar switching losses and switching time before C_{GE} insertion, selection of approximately half R_g before C_{GE} insertion would be recommended. In this condition, no issue must be fully confirmed.

The short-circuit current flow through the upper and lower arms is caused by insufficient dead time, as well as accidental turn-on during dv/dt described above. A short-circuit current can be observed by running the test shown in Fig.4-9 while this phenomenon is present. If increasing the reverse bias voltage $-V_{GE}$ does not help reduce the short-circuit current, take relevant action, such as increasing the dead time. (More detailed instructions can be found in Chapter 7.)
3.4 Diode reverse recovery from a transient on state (Short off pulse reverse recovery)

The IGBT module contains a FWD. Paying full attention to the behavior of the FWD is very important for designing a dependable circuit. This section focuses on the less known phenomenon of short off pulse reverse recovery that could lead to product destruction.

Fig. 4-10 shows a timing chart in which an excessive surge voltage arises from short off pulse reverse recovery. According to this phenomenon, an extremely excessive reverse recovery surge voltage arises between C and E of the FWD on the opposing arm when very short off pulses (Tw) like those shown are generated after gate signal interruptions resulting from noise interferences during IGBT switching.
A surge voltage exceeding the guaranteed rated withstand voltage level of the module is most likely to lead to device destruction. Testing has confirmed a sharp increase in surge voltage when $T_w < 1\,\mu s$. Be sure not to design a circuit that will generate such short gate signal off pulses.

This phenomenon occurs because the FWD enters a state of reverse recovery very shortly after it is turned on, so that voltage application begins without a sufficient quantity of carrier stored in the FWD, with the depletion layer spreading rapidly to generate steep dI/dt and dv/dt. With devices supporting an operation mode in which T_w is $1\,\mu s$ or shorter, verify that the surge voltage in the minimum period of T_w does not exceed the device withstand voltage.

If the surge voltage exceeds the device withstand voltage rating, take action to reduce surge voltages as follows.

- Increasing the R_G
- Cutting the circuit inductance
- Building up the snubber circuit
- Installing a C_{GE}
- Adding the clamping circuit

Fig. 4-11 shows the diode reverse-recovery waveforms when a short off pulse of 6MBI450U-120 (1200V, 450A). As shown below, surge voltage can be decreased by enlarging R_G from 1.0Ω to 5.6Ω.

![Waveform Diagram](image)

(1) $R_{on}=1.0\,\Omega$
(2) $R_{on}=5.6\,\Omega$

$E_d=600V$, $I_F=50A$, $T_j=125^\circ C$, $T_w=1\,\mu s$

6MBI450U-120

Fig. 4-11 Waveforms of reverse recovery at short off pulse
3.5 Oscillation from IGBTs connected in parallel

When products are connected in parallel, the uniformity of the main circuit wiring is very important. Without balanced wiring, concentrated transient currents could occur on the device having a shorter wiring path during switching, which could cause device destruction or degrade long-term reliability. In a main wiring circuit in which the wiring is not uniform or balanced the overall main circuit inductance will also be out of balance among the devices.

Consequently, voltages of varied potentials are generated in the individual wiring inductances from $\frac{di}{dt}$ during switching, producing an abnormal oscillating current, such as a loop current, leading to possible device destruction.

Fig.4-12 (1) shows the oscillation phenomenon when the wiring inductance of the emitter portion is made extremely unbalanced. An IGBT can generate this oscillation current at the wiring loop in the emitter portion connected in parallel, this influences the gate voltage and the oscillation phenomenon which is generated by the high speed switching. A ferrite core (common mode) can be inserted in each gate emitter wiring circuit to reduce or eliminate the loop current in the emitter portion. Fig.4-12 (2) shows the waveforms with the common mode core. Note the elimination of the previous oscillation.

Give full consideration to maintaining circuit uniformity when designing main circuit wiring.

Fig. 4-12 Waveforms of 2 parallel connection
3.6 Notes on the soldering process

Problems, such as melting case resin material, could result if excessive soldering temperature is applied when soldering a gate driver circuit or control circuit to the terminals of the IGBT module. Stay within normal soldering processes, avoid high exposure that exceeds maximum recommended terminal soldering defined in the specifications. (Terminal heat resistance test conditions that are covered in the general product specifications documents are listed below for reference.)

- Solder temperature: 260±5°C
- Dwell time: 10±1s
- Cycles: 1

3.7 IGBT Module converter application

Diodes used in the IGBT modules have an I^2t rating. I^2t is a scale of the forward, non-repetitive overcurrent capability of current pulses having a very short duration (less than 10ms). Current (I) denotes the effective current, and time (t) indicates the pulse duration. If the IGBT module is used in a rectifier circuit (or converter circuit), do not exceed the maximum I^2t limits. If you approach the I^2t limits, insert a starter circuit having a resistance and a contactor connected in parallel, for example, between the AC power supply and the IGBT module. If fuse protection is used, select a fuse not exceeding rated I^2t.

3.8 Countermeasure of EMC noise

Amid the ongoing effort to comply with European CE marking for IGBT module-based converters, such as inverters and UPS, and with VCCI regulations in Japan, electromagnetic compatibility (EMC), particularly, holding down noise interferences (conductive and radiating noises emitted from devices in operation) to specifications or below, has become an essential aspect of circuit design.

As IGBT modules continue to offer enhanced characteristics, including faster switching and less loss, from generation to generation, high dv/dt and di/dt generated from their switching action is more frequently becoming a source of radiating noise interferences.

Radiation noises are primarily associated with harmonic LC resonance between stray capacitances, such as semiconductor device junction capacitances, and wiring stray inductances, triggered by high dv/dt and di/dt generated from the IGBTs during turn-on (reverse recovery of the FWD in the opposing arm).

Fig.4-14 shows examples of radiation noise of 1200V IGBT modules (2MBI150SC-120, 1200V, 150A). The radiation noise with twice standard gate resistance (12Ω) can decrease about 10dB or more.

A soft-waveform implementation of the switching characteristics to decrease radiation noises, however, tends to increase the switching loss. It is important to design the drive conditions to keep them balanced with the device operating conditions, module cooling conditions and other relevant conditions.

Moreover, a general example of countermeasures of radiation noise is shown in Table 4-2. Because the

![Fig. 4-14 Radiation noise of motor drivers](image-url)
generation factor and noise level are different according to the wiring structure of the device and the material and the circuit composition, etc., it is necessary to verify which of the countermeasures is effective.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase the gate resistance (particularly, turn-on side) to two to three times the standard value listed in the datasheet.</td>
<td>The switching loss increases. The switching time lengthens.</td>
<td></td>
</tr>
<tr>
<td>Insert a small capacitor between the gate and emitter. Its capacitance should be somewhere from the feedback capacitance to the input capacitance (Cres to Cies).</td>
<td>The switching loss increases. The switching time lengthens.</td>
<td></td>
</tr>
<tr>
<td>Minimize the wiring distance between the snubber capacitor and the IGBT module (connect to the module pins).</td>
<td>Also useful for canceling surge voltages during switching and dv/dt.</td>
<td></td>
</tr>
<tr>
<td>Use laminated bus bars to reduce inductances.</td>
<td>Also useful for canceling surge voltages during switching and dv/dt.</td>
<td></td>
</tr>
<tr>
<td>Connect noise filters to device input and output.</td>
<td>Various filters are commercially available.</td>
<td></td>
</tr>
<tr>
<td>Shield the I/O cables to cut radiating noise from the cables.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalize the device cabinet to suppress noise emissions from the device.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. This Catalog contains the product specifications, characteristics, data, materials, and structures as of May 2011. The contents are subject to change without notice for specification changes or other reasons. When using a product listed in this Catalog, be sure to obtain the latest specifications.

2. All applications described in this Catalog exemplify the use of Fuji's products for your reference only. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Co., Ltd. is (or shall be deemed) granted. Fuji Electric Co., Ltd. makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights which may arise from the use of the applications described herein.

3. Although Fuji Electric Co., Ltd. is enhancing product quality and reliability, a small percentage of semiconductor products may become faulty. When using Fuji Electric semiconductor products in your equipment, you are requested to take adequate safety measures to prevent the equipment from causing a physical injury, fire, or other problem if any of the products become faulty. It is recommended to make your design failsafe, flame retardant, and free of malfunction.

4. The products introduced in this Catalog are intended for use in the following electronic and electrical equipment which has normal reliability requirements.
 - Computers
 - OA equipment
 - Communications equipment (terminal devices)
 - Measurement equipment
 - Machine tools
 - Audiovisual equipment
 - Electrical home appliances
 - Personal equipment
 - Industrial robots etc.

5. If you need to use a product in this Catalog for equipment requiring higher reliability than normal, such as for the equipment listed below, it is imperative to contact Fuji Electric Co., Ltd. to obtain prior approval. When using these products for such equipment, take adequate measures such as a backup system to prevent the equipment from malfunctioning even if a Fuji's product incorporated in the equipment becomes faulty.
 - Transportation equipment (mounted on cars and ships)
 - Traffic-signal control equipment
 - Emergency equipment for responding to disasters and anti-burglary devices
 - Medical equipment
 - Trunk communications equipment
 - Gas leakage detectors with an auto-shut-off feature
 - Safety devices

6. Do not use products in this Catalog for the equipment requiring strict reliability such as the following and equivalents to strategic equipment (without limitation).
 - Space equipment
 - Aeronautic equipment
 - Nuclear control equipment
 - Submarine repeater equipment

7. Copyright ©1996-2011 by Fuji Electric Co., Ltd. All rights reserved. No part of this Catalog may be reproduced in any form or by any means without the express permission of Fuji Electric Co., Ltd.

8. If you have any question about any portion in this Catalog, ask Fuji Electric Co., Ltd. or its sales agents before using the product. Neither Fuji Electric Co., Ltd. nor its agents shall be liable for any injury caused by any use of the products not in accordance with instructions set forth herein.